SIMNRA is widely adopted by the scientific community of ion beam analysis for interpretation of nuclear scattering analysis. Taking advantage of its recognized reliability and quality of the simulations, we developed a computer program that use parallel sessions of SIMNRA to perform self-consistent analysis for energy spectra of a given sample obtained using different techniques or experimental setups. In this paper, we present a result using MultiSIMNRA on self-consistent analysis for a multielemental thin film produced by magnetron sputtering. The results demonstrate the potentialities of the self-consistent analysis and its feasibility when using MultiSIMNRA.
We here describe a bottom-up approach to control the composition of solid/solid interfaces in nanostructured materials, and we test its effectiveness on tetragonal ZrO2, an inorganic phase of great technological significance. Colloidal nanocrystals capped with trioctylphosphine oxide (TOPO) or oleic acid (OA) are deposited, and the organic fraction of the ligands is selectively etched with O2 plasma. The interfaces in the resulting all-inorganic colloidal nanocrystal assemblies are either nearly bare (for OA-capped nanocrystals) or terminated with phosphate groups (for TOPO-capped nanocrystals) resulting from the reaction of phosphine oxide groups with plasma species. The chemical modification of the interfaces has extensive effects on the thermodynamics and kinetics of the material. Different growth kinetics indicate different rate limiting processes of growth (surface diffusion for the phosphate-terminated surfaces and dissolution for the "bare" surfaces). Phosphate termination led to a higher activation energy of growth, and a 3-fold reduction in interfacial energy, and facilitated significantly the conversion of the tetragonal phase into the monoclinic phase. Films devoid of residual ligands persisted in the tetragonal phase at temperatures as high as 900 °C for 24 h.
We have used the low-energy beam line of the São Paulo Microtron accelerator to study the maximum energy transfer point (tip) of electron-atom bremsstrahlung spectra for C, Al, Te, Ta and Au. Absolute cross sections differential in energy and angle of the emitted photon were measured for various electron kinetic energies between 20 and 100 keV, and photon emission angles of 35 • , 90 • and 131 • . The bremsstrahlung spectra were collected with three HPGe detectors and their response functions were evaluated analytically. Rutherford backscattering spectrometry allowed us to obtain the thicknesses of the targets with good accuracy. We propose a simple model for the tip region of the bremsstrahlung spectrum emitted at a given angle, whose adjustable parameters are the mean energy of the incident beam and its spread as well as an amplitude. The model was fitted simultaneously to the pulse-height distributions recorded at the three angles, determining the doubly differential cross sections from the corresponding amplitudes. The measured values have uncertainties between 3% and 13%. The agreement of the experimental results with the theoretical partial-wave calculations of Pratt and co-workers depends on the analyzed element and angle but is generally satisfactory. In the case of Al and Au, the uncertainty attributed to the theory is probably overestimated.
Helium plasmas are attractive reagents for the removal of organics from hybrid materials because of their minimal ablative power and relative inertness, compared to oxidizing feed gases such as O 2 and highly ablative inert gases such as Ar. This work describes the use of dilute helium plasmas to selectively remove the organic ligands from films of colloidal nanoparticles (i.e., colloidal nanoparticle assemblies). We determine the relative contribution to etching of different plasma species in a model system consisting of films of ZrO 2 nanoparticles capped with trioctylphosphine oxide. Unexpectedly, we find that the strong ultraviolet radiation of He plasma is only a minor contributor to etching (25% of the etched carbon). Excited He species are responsible for most of the etching (75% of the etched carbon). Carbon concentrations as low as 3.5 atom % can be achieved under non-optimized plasma processing conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.