The thoracic duct (TD) transports lymph drained from the body to the venous system in the neck via the lymphovenous junction. There has been increased interest in the TD lymph (including gut lymph) because of its putative role in the promotion of systemic inflammation and organ dysfunction during acute and critical illness. Minimally invasive TD cannulation has recently been described as a potential method to access TD lymph for investigation. However, marked anatomical variability exists in the terminal segment and the physiology regarding the ostial valve and terminal TD is poorly understood. A systematic review was conducted using three databases from 1909 until May 2017. Human and animal studies were included and data from surgical, radiological and cadaveric studies were retrieved. Sixty-three articles from the last 108 years were included in the analysis. The terminal TD exists as a single duct in its terminal course in 72% of cases and 13% have multiple terminations: double (8.5%), triple (1.8%) and quadruple (2.2%). The ostial valve functions to regulate flow in relation to the respiratory cycle. The patency of this valve found at the lymphovenous junction opening, is determined by venous wall tension. During inspiration, central venous pressure (CVP) falls and the valve cusps collapse to allow antegrade flow of lymph into the vein. During early expiration when CVP and venous wall tension rises, the ostial valve leaflets cover the opening of the lymphovenous junction preventing antegrade lymph flow. During chronic disease states associated with an elevated mean CVP (e.g. in heart failure or cirrhosis), there is a limitation of flow across the lymphovenous junction. Although lymph production is increased in both heart failure and cirrhosis, TD lymph outflow across the lymphovenous junction is unable to compensate for this increase. In conclusion the terminal TD shows marked anatomical variability and TD lymph flow is controlled at the ostial valve, which responds to changes in CVP. This information is relevant to techniques for cannulating the TD, with the aid of minimally invasive methods and high resolution ultrasonography, to enable longitudinal physiology and lymph composition studies in awake patients with both acute and chronic disease.
Acute pancreatitis (AP) is a common disease for which a specific treatment remains elusive. The key determinants of the outcome from AP are persistent organ failure and infected pancreatic necrosis. The prevention and treatment of these determinants provides a framework for the development of specific treatment strategies. The gut-lymph concept provides a common mechanism for systemic inflammation and organ dysfunction. Acute and critical illness, including AP, is associated with intestinal ischemia and drastic changes in the composition of gut lymph, which bypasses the liver to drain into the systemic circulation immediately proximal to the major organ systems which fail. The external diversion of gut lymph and the targeting of treatments to counter the toxic elements in gut lymph offers novel approaches to the prevention and treatment of persistent organ failure. Infected pancreatic necrosis is increasingly treated with less invasive techniques, the mainstay of which is drainage, both endoscopic and percutaneous. Further improvements will occur with the strategies to accelerate liquefaction and through a fundamental redesign of drains, both of which will increase drainage efficacy. The determinants of severity and outcome in patients admitted with AP provide the basis for innovative treatment strategies. The priorities are to translate the gut-lymph concept to clinical practice and to improve the design and active use of drains for infected complications of AP.
Trevaskis et al. Allometry of Drug in Lymph following absorption. Overall, this study proposes that intestinal lymphatic flow, and lymphatic lipid and drug transport in humans is most similar to species with higher body mass such as dogs and underestimated by studies in rodents. Notably, lymph flow and lipid transport in humans can be predicted from animal data via allometric scaling suggesting the potential for similar relationships with drug transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.