Pseudoxanthoma elasticum (PXE), a pleiotropic heritable disorder, is characterized by ectopic mineralization of the connective tissues. This disease is caused by mutations in the ABCC6 gene, which is expressed primarily in the baso-lateral surface of hepatocytes, and Abcc6 ؊/؊ mice develop progressive mineralization mimicking human PXE. To investigate the hypothesis that PXE is a metabolic disorder, potentially caused by the absence of antimineralization factor(s) in circulation, we used parabiotic pairing, ie, surgical joining of two mice, to create a shared circulation between various Abcc6 genotypic mice. To prevent immune reaction between the parabiotic animals, all mice were bred to be Rag1
Shared circulation between the parabiotic animals was confirmed by Evans blue dye injection and by quantitative PCR of blood cell genotypes. Pairing of Abcc6؊/؊ mice with their wild-type counterparts halted the connective tissue mineralization in the knockout mice. Homogenetic wild-type and heterozygous pairings serving as controls were phenotypically unaffected by parabiosis. Consequently , the observations on the parabiotic mice support the notion that PXE is a metabolic disease , potentially due to absence of systemic antimineralization factor(s). These observations suggest that reintroduction of the critical antimineralization factors into circulation could provide a potential treatment for this , currently intractable , disease.
Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic mineralization of connective tissues primarily in the skin, eyes, and the cardiovascular system. PXE is caused by mutations in the ABCC6 gene. While PXE is associated with considerable morbidity and mortality, there is currently no effective or specifi c treatment. In this study, we tested oral phosphate binders for treatment of a mouse model of PXE which we have developed by targeted ablation of the corresponding mouse gene ( Abcc6). This "knock-out" (KO) mouse model recapitulates features of PXE and demonstrates mineralization of a number of tissues, including the connective tissue capsule surrounding vibrissae in the muzzle skin which serves as an early biomarker of the mineralization process. Treatment of these mice with a magnesium carbonate-enriched diet (magnesium concentration being 5-fold higher than in the control diet) completely prevented mineralization of the vibrissae up to 6 months of age, as demonstrated by computerized morphometric analysis of histopathology as well as by calcium and phosphate chemical assays. The magnesium carbonate-enriched diet also prevented the progression of mineralization when the mice were placed on that experimental diet at 3 months of age and followed up to 6 months of age. Treatment with magnesium carbonate was associated with a slight increase in the serum concentration of magnesium, with no effect on serum calcium and phosphorus levels. In contrast, concentration of calcium in the urine was increased over 10-fold while the concentration of phosphorus was markedly decreased, being essentially undetectable after long-term (>4 month) treatment. No signifi cant changes were noted in the serum parathyroid hormone levels. Computerized axial tomography scan of bones in mice placed on magnesium carbonate-enriched diet showed no differences in the bone density compared to mice on the control diet, and chemical assays showed a small increase in the calcium and phosphate content of the femurs by chemical assay, in comparison to mice on control diet. Similar experiments with another experimental diet supplemented with lanthanum carbonate did not interfere with the mineralization process in Abcc6 −/− mice. These results suggest that magnesium carbonate may offer a potential treatment modality for PXE, a currently intractable disease, as well as for other conditions characterized by ectopic mineralization of connective tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.