Pseudoxanthoma elasticum (PXE) is an autosomal recessive multi-system disorder characterized by ectopic connective tissue mineralization, with clinical manifestations primarily in the skin, eyes and the cardiovascular system. There is considerable, both intra-and inter-familial variability in the spectrum of phenotypic presentation. Previous studies have suggested that mineral content of the diet may modify the severity of the clinical phenotype in PXE. In this study, we utilized a targeted mutant mouse (Abcc6−/−) as a model system for PXE. We examined the effects of changes in dietary phosphate and magnesium on the mineralization process using calcification of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Mice placed on custom-designed diets either high or low in phosphate did not show changes in mineralization, which was similar to that noted in Abcc6−/− mice on control diet. However, mice placed on diet enriched in magnesium (5-fold) showed no evidence of connective tissue mineralization in this mouse model of PXE. The inhibitory capacity of magnesium was confirmed in a cell-based mineralization assay system in vitro. Collectively, our observations suggest that assessment of dietary magnesium in patients with PXE may be warranted.
Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic mineralization of connective tissues primarily in the skin, eyes, and the cardiovascular system. PXE is caused by mutations in the ABCC6 gene. While PXE is associated with considerable morbidity and mortality, there is currently no effective or specifi c treatment. In this study, we tested oral phosphate binders for treatment of a mouse model of PXE which we have developed by targeted ablation of the corresponding mouse gene ( Abcc6). This "knock-out" (KO) mouse model recapitulates features of PXE and demonstrates mineralization of a number of tissues, including the connective tissue capsule surrounding vibrissae in the muzzle skin which serves as an early biomarker of the mineralization process. Treatment of these mice with a magnesium carbonate-enriched diet (magnesium concentration being 5-fold higher than in the control diet) completely prevented mineralization of the vibrissae up to 6 months of age, as demonstrated by computerized morphometric analysis of histopathology as well as by calcium and phosphate chemical assays. The magnesium carbonate-enriched diet also prevented the progression of mineralization when the mice were placed on that experimental diet at 3 months of age and followed up to 6 months of age. Treatment with magnesium carbonate was associated with a slight increase in the serum concentration of magnesium, with no effect on serum calcium and phosphorus levels. In contrast, concentration of calcium in the urine was increased over 10-fold while the concentration of phosphorus was markedly decreased, being essentially undetectable after long-term (>4 month) treatment. No signifi cant changes were noted in the serum parathyroid hormone levels. Computerized axial tomography scan of bones in mice placed on magnesium carbonate-enriched diet showed no differences in the bone density compared to mice on the control diet, and chemical assays showed a small increase in the calcium and phosphate content of the femurs by chemical assay, in comparison to mice on control diet. Similar experiments with another experimental diet supplemented with lanthanum carbonate did not interfere with the mineralization process in Abcc6 −/− mice. These results suggest that magnesium carbonate may offer a potential treatment modality for PXE, a currently intractable disease, as well as for other conditions characterized by ectopic mineralization of connective tissues.
Pseudoxanthoma elasticum (PXE), a heritable multisystem disorder, is caused by mutations in the ABCC6 gene. We have developed a murine model for PXE by targeted inactivation of the corresponding mouse gene. A feature of this mouse model is ectopic mineralization of connective tissue capsule surrounding the bulb of vibrissae. This study was designed to investigate the effect of dietary sevelamer hydrochloride (Renagel), a phosphate binder, and specific mineral modifications on ectopic mineralization of connective tissue in Abcc6-/- mice. Three groups were fed a specific diet: (i) a standard rodent diet, (ii) a standard rodent diet supplemented with sevelamer hydrochloride, and (iii) a custom experimental diet with specific mineral modifications (high phosphorus, low calcium and low magnesium). The degree of mineralization was determined in hematoxylin-eosin-stained sections using computerized morphometric analysis and by chemical assays to measure the calcium and phosphorus content of the vibrissae. The results indicated increased mineralization in the Abcc6-/- mice fed a standard diet or a diet with mineral modifications as compared with control mice fed a standard diet. However, feeding Abcc6-/- mice with diet supplemented with sevelamer hydrochloride did not improve mineralization, in comparison to mice fed with normal diet. Collectively, these results suggest that the mineralization process in PXE may be exacerbated by changes in mineral intake. The role of dietary minerals, and phosphorus in particular, as well as that of phosphate binders, in ectopic mineralization of PXE, merits further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.