Because BTs are regularly found in the aquatic environment at lower μg l(-1) concentrations reflecting their persistence and poor elimination during wastewater treatment processes, a preliminary risk assessment was conducted. There is little indication that BTs pose a risk for aquatic ecosystems at current exposure levels during most of the year. However, it cannot be excluded that in winter with a higher usage of ADAFs environmental concentrations may well exceed the level that is considered safe for aquatic organisms.
Time series analyses of BT in composite river water samples collected at two river sites of the Hengstbach/Schwarzbach catchment area, without any waste water effluents in between, are recommended to study in-stream removal of BT. In addition, exposure modeling is recommended of BT, regarding all input sources and in-stream removal processes to predict exposure concentrations of BT in rivers. In order to calibrate and validate the model, additional monitoring data are required.
The anticorrosive agents 1H-benzotriazole (1H-BT), 4-methyl-1H-benzotriazole (4 Me-BT) and 5-methyl-1H-benzotriazole (5 Me-BT), which are usually added to dishwasher detergents, automotive antifreeze formulations and aircraft de-icing/anti-icing fluids (ADAFs), were measured in river water. Samples were collected from 15 sampling sites in the mainstream and selected tributaries of a medium-sized catchment area during summer and winter periods. The aim of this study was to assess a seasonal source influence on mass flows of benzotriazoles (BTs). The study area was representatively selected for an area with a possible influence of airport surface runoff. River discharge measurements were also performed. Moreover, BT concentrations were measured in an anti-icing and a de-icing fluid used at German airports as well as in several dishwasher detergents. The highest concentrations of all three compounds in river water were measured during the winter seasons. The maximum BT mass flows were calculated for all three substances in January when the mean monthly air temperature was the lowest; mass flows were the lowest in July when the mean monthly air temperature was the highest. A significant seasonal influence on BT mass flows in river water was observed for monitoring stations with a possible influence of airport surface runoff and for sampling locations where such an influence could be excluded. This indicates an input of BTs from other temperature-dependent applications, e.g. the use of antifreeze formulations in automotive windscreen wiper or cooling systems. 1H-BT was detected in two dishwasher tablets; 4 Me-BT and 5 Me-BT were not detected. BTs were measured in the anti-icing fluid with concentrations of 715 ng g(-1) (1H-BT), 1425 ng g(-1) (4 Me-BT) and 536 ng g(-1) (5 Me-BT); none of the BTs were detected in the de-icing fluid. Distribution patterns of BTs in ADAF and dishwasher detergents differed from those in river water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.