Serum paraoxonase-1 (PON1) is the most studied member of the group of paraoxonases (PONs). This enzyme possesses three enzymatic activities: lactonase, arylesterase, and paraoxonase activity. PON1 and its isoforms play an important role in drug metabolism as well as in the prevention of cardiovascular and neurodegenerative diseases. Although all three members of the PON family have the same origin and very similar amino acid sequences, they have different functions and are found in different locations. PONs exhibit substrate promiscuity, and their true physiological substrates are still not known. However, possible substrates include homocysteine thiolactone, an analogue of natural quorum-sensing molecules, and the recently discovered derivatives of arachidonic acid—bioactive δ-lactones. Directed evolution, site-directed mutagenesis, and kinetic studies provide comprehensive insights into the active site and catalytic mechanism of PON1. However, there is still a whole world of mystery waiting to be discovered, which would elucidate the substrate promiscuity of a group of enzymes that are so similar in their evolution and sequence yet so distinct in their function.
Paraoxonase 1 (PON1) enzyme has antioxidative properties and is present in mammalian blood and several other body fluids. In blood, PON1 is usually integrated into the high-density lipoprotein (HDL) cholesterol. PON1 is a highly versatile enzyme displaying diverse functions such as arylesterase, lactonase, and paraoxonase, among others. PON1 activities are usually investigated with artificial substrates, for example, dihydrocoumarin and thiobutyl butyrolactone for lactonase activity. The PON1 enzyme activities measured with different substrates tend to be falsely assumed as being equivalent in the literature, although there are poor or weak correlations among the PON1 enzyme activities with different substrates. In addition, and despite our knowledge of the factors influencing PON1 paraoxonase and arylesterase activities, there is little knowledge of PON1 lactonase activity variations and attendant mechanisms. This is important considering further that the lactonase activity is the native activity of PON1. We report here a multi-omics analysis of PON1 lactonase activity. The influence of genetic variations, particularly of single nucleotide polymorphisms and epigenetic, proteomic, and lipidomic variations on PON1 lactonase activity are reviewed. In addition, the influence of various environmental, clinical, and demographic variables on PON1 lactonase activity is discussed. Finally, we examine the associations between PON1 lactonase activity and health states and common complex diseases such as atherosclerosis, dementias, obesity, and diabetes. To the best of our knowledge, this is the first multi-omics analysis of PON1 lactonase activity with an eye to future applications in basic life sciences and translational medicine and the nuances of critically interpreting PON1 function with lactones as substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.