The dysregulation of inflammatory responses and of immune self-tolerance is considered to be a key element in the autoreactive immune response in multiple sclerosis (MS). Regulatory T (T(REG)) cells have emerged as crucial players in the pathogenetic scenario of CNS autoimmune inflammation. Targeted deletion of T(REG) cells causes spontaneous autoimmune disease in mice, whereas augmentation of T(REG)-cell function can prevent the development of or alleviate variants of experimental autoimmune encephalomyelitis, the animal model of MS. Recent findings indicate that MS itself is also accompanied by dysfunction or impaired maturation of T(REG) cells. The development and function of T(REG) cells is closely linked to dendritic cells (DCs), which have a central role in the activation and reactivation of encephalitogenic cells in the CNS. DCs and T(REG) cells have an intimate bidirectional relationship, and, in combination with other factors and cell types, certain types of DCs are capable of inducing T(REG) cells. Consequently, T(REG) cells and DCs have been recognized as potential therapeutic targets in MS. This Review compiles the current knowledge on the role and function of various subsets of T(REG) cells in MS and experimental autoimmune encephalomyelitis. We also highlight the role of tolerogenic DCs and their bidirectional interaction with T(REG) cells during CNS autoimmunity.
Dendritic cells (DCs) accumulate in the CNS during inflammatory diseases, but the exact mechanism regulating their traffic into the CNS remains to be defined. We now report that MIP-1α increases the transmigration of bone marrow-derived, GFP-labeled DCs across brain microvessel endothelial cell monolayers. Furthermore, occludin, an important element of endothelial tight junctions, is reorganized when DCs migrate across brain capillary endothelial cell monolayers without causing significant changes in the barrier integrity as measured by transendothelial electrical resistance. We show that DCs produce matrix metalloproteinases (MMP) -2 and -9 and GM6001, an MMP inhibitor, decreases both baseline and MIP-1α-induced DC transmigration. These observations suggest that DC transmigration across brain endothelial cell monolayers is partly MMP dependent. The migrated DCs express higher levels of CD40, CD80, and CD86 costimulatory molecules and induce T cell proliferation, indicating that the transmigration of DCs across brain endothelial cell monolayers contributes to the maintenance of DC Ag-presenting function. The MMP dependence of DC migration across brain endothelial cell monolayers raises the possibility that MMP blockers may decrease the initiation of T cell recruitment and neuroinflammation in the CNS.
The co-inhibitory B7-homologue 1 (B7-H1/PD-L1) influences adaptive immune responses and has been proposed to contribute to the mechanisms maintaining peripheral tolerance and limiting inflammatory damage in parenchymal organs. To understand the B7-H1/PD1 pathway in CNS inflammation, we analyzed adaptive immune responses in myelin oligodendrocyte glycoprotein (MOG) 35-55 -induced EAE and assessed the expression of B7-H1 in human CNS tissue. B7-H1 -/-mice exhibited an accelerated disease onset and significantly exacerbated EAE severity, although absence of B7-H1 had no influence on MOG antibody production. Peripheral MOG-specific IFN-c/IL-17 T cell responses occurred earlier and enhanced in B7-H1 -/-mice, but ceased more rapidly. In the CNS, however, significantly higher numbers of activated neuroantigen-specific T cells persisted during all stages of EAE.Experiments showing a direct inhibitory role of APC-derived B7-H1 on the activation of MOG-specific effector cells support the assumption that parenchymal B7-H1 is pivotal for delineating T cell fate in the target organ. Compatible with this concept, our data investigating human brain tissue specimens show a strong up-regulation of B7-H1 in lesions of multiple sclerosis. Our findings demonstrate the critical importance of B7-H1 as an immune-inhibitory molecule capable of down-regulating T cell responses thus contributing to the confinement of immunopathological damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.