Multiple sclerosis is an immune-mediated demyelinating disease, with axonal loss underlying long-term progressive disability. In this study, we have analyzed axonal and myelin pathology in a chronic relapsing-remitting experimental autoimmune encephalomyelitis model in Biozzi ABH mice induced by immunization with a syngeneic spinal cord homogenate. The animals were followed for3 months; inflammation, T-cell infiltration, demyelination, and axonal loss were examined at various time points throughout the disease course. We found that macrophage infiltration and microglia activation preceded detectable T-cell infiltration. Axonal loss was first evident at the acute phase of disease before demyelination was detected. Demyelination and axonal loss occurred after each relapse and correlated with increasing residual motor deficits in remission. The resulting lesions displayed evidence of demyelination, remyelination, axonal degeneration, and axon loss. After a series of 3 relapses, animals entered a chronic progressive phase with permanent paralysis and a relative absence of inflammation. Axonal loss continued in this phase, although demyelinated axons persisted. These findings indicate that experimental autoimmune encephalomyelitis in Biozzi ABH mice has important similarities to multiple sclerosis with a relapsing-remitting disease course followed by a secondary progressive phase; it is thus a suitable model in which to explore remyelination and neuroprotective therapies for multiple sclerosis.
Multiple sclerosis and an animal model resembling multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the CNS that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-γ, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-γ in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG). In this study, we demonstrate that intracerebral (i.c.) BCG infection prevented inflammatory cell recruitment to the spinal cord and suppressed the development of EAE. Concomitantly, there was a significant decrease in the frequency of myelin oligodendrocyte glycoprotein-specific IFN-γ-producing CD4+ T cells in the CNS. IL-17+CD4+ T cell responses were significantly suppressed in i.c. BCG-infected mice following EAE induction regardless of T cell specificity. The frequency of Foxp3+CD4+ T cells in these mice was equivalent to that of control mice. Intracerebral BCG infection-induced protection of EAE and suppression of myelin oligodendrocyte glycoprotein-specific IL-17+CD4+ T cell responses were similar in both wild-type and IFN-γ-deficient mice. These data show that live BCG infection in the brain suppresses CNS autoimmunity. These findings also reveal that the regulation of Th17-mediated autoimmunity in the CNS can be independent of IFN-γ-mediated mechanisms.
Dendritic cells (DCs) are a heterogeneous group of professional antigen presenting cells that lie in a nexus between innate and adaptive immunity because they recognize and respond to danger signals and subsequently initiate and regulate effector T-cell responses. Initially thought to be absent from the CNS, both plasmacytoid and conventional DCs as well as DC precursors have recently been detected in several CNS compartments where they are seemingly poised for responding to injury and pathogens. Additionally, monocyte-derived DCs rapidly accumulate in the inflamed CNS where they, along with other DC subsets, may function to locally regulate effector T-cells and/or carry antigens to CNS-draining cervical lymph nodes. In this review we highlight recent research showing that (a) distinct inflammatory stimuli differentially recruit DC subsets to the CNS; (b) DC recruitment across the blood-brain barrier (BBB) is regulated by adhesion molecules, growth factors, and chemokines; and (c) DCs positively or negatively regulate immune responses in the CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.