Este documento presenta una prueba de rendimiento creada para evaluar el desempeño de diferentes plataformas en la ejecución de un algoritmo de reducción de niebla basado en el “Dark Channel Prior” (DCP) [1]. El parámetro utilizado para la evaluación fue el número de cuadros por segundo (FPS, por sus siglas en inglés) que el dispositivo es capaz de procesar. Con esta herramienta se logra determinar aquellas arquitecturas que son aptas para ejecutar el algoritmo en tiempo real.
El ambiente de pruebas se ejecutó en cuatro plataformas, un Google Pixel 3a, una Raspberry Pi 3B+, una GPU de NVIDIA y un procesador Intel x86. Se usaron los siguientes kits de desarrollo de software (SDK, por sus siglas en inglés) según la plataforma: Android NDK, Yocto Poky, CUDA y la cadena de herramientas GCC.
La herramienta permitió recopilar, para cada plataforma, los FPS para distintos tamaños de imagen, con estos resultados se pueden escoger la arquitectura más idónea según el área de implementación (e.g., bajo consumo o HPC).
El ambiente de pruebas se ejecutó en cuatro plataformas, un Google Pixel 3a, una Raspberry Pi 3B+, una GPU de NVIDIA y un procesador Intel x86. Se usaron los siguientes kits de desarrollo de software (SDK, por sus siglas en inglés) según la plataforma: Android NDK, Yocto Poky, CUDA y la cadena de herramientas GCC.
La herramienta permitió recopilar, para cada plataforma, los FPS para distintos tamaños de imagen, con estos resultados se pueden escoger la arquitectura más idónea según el área de implementación (e.g., bajo consumo o HPC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.