DNA methylation of retroviral promoters and enhancers localized in the provirus 5′ long terminal repeat (LTR) is considered to be a mechanism of transcriptional suppression that allows retroviruses to evade host immune responses and antiretroviral drugs. However, the role of DNA methylation in the control of HIV-1 latency has never been unambiguously demonstrated, in contrast to the apparent importance of transcriptional interference and chromatin structure, and has never been studied in HIV-1-infected patients. Here, we show in an in vitro model of reactivable latency and in a latent reservoir of HIV-1-infected patients that CpG methylation of the HIV-1 5′ LTR is an additional epigenetic restriction mechanism, which controls resistance of latent HIV-1 to reactivation signals and thus determines the stability of the HIV-1 latency. CpG methylation acts as a late event during establishment of HIV-1 latency and is not required for the initial provirus silencing. Indeed, the latent reservoir of some aviremic patients contained high proportions of the non-methylated 5′ LTR. The latency controlled solely by transcriptional interference and by chromatin-dependent mechanisms in the absence of significant promoter DNA methylation tends to be leaky and easily reactivable. In the latent reservoir of HIV-1-infected individuals without detectable plasma viremia, we found HIV-1 promoters and enhancers to be hypermethylated and resistant to reactivation, as opposed to the hypomethylated 5′ LTR in viremic patients. However, even dense methylation of the HIV-1 5′LTR did not confer complete resistance to reactivation of latent HIV-1 with some histone deacetylase inhibitors, protein kinase C agonists, TNF-α, and their combinations with 5-aza-2deoxycytidine: the densely methylated HIV-1 promoter was most efficiently reactivated in virtual absence of T cell activation by suberoylanilide hydroxamic acid. Tight but incomplete control of HIV-1 latency by CpG methylation might have important implications for strategies aimed at eradicating HIV-1 infection.
The persistence of transcriptionally silent but replication-competent HIV-1 reservoirs in Highly Active Anti-Retroviral Therapy (HAART)-treated infected individuals, represents a major hurdle to virus eradication. Activation of HIV-1 gene expression in these cells together with an efficient HAART has been proposed as an adjuvant therapy aimed at decreasing the pool of latent viral reservoirs. Using the latently-infected U1 monocytic cell line and latently-infected J-Lat T-cell clones, we here demonstrated a strong synergistic activation of HIV-1 production by clinically used histone deacetylase inhibitors (HDACIs) combined with prostratin, a non-tumor-promoting nuclear factor (NF)- κB inducer. In J-Lat cells, we showed that this synergism was due, at least partially, to the synergistic recruitment of unresponsive cells into the expressing cell population. A combination of prostratin+HDACI synergistically activated the 5′ Long Terminal Repeat (5'LTR) from HIV-1 Major group subtypes representing the most prevalent viral genetic forms, as shown by transient transfection reporter assays. Mechanistically, HDACIs increased prostratin-induced DNA-binding activity of nuclear NF-κB and degradation of cytoplasmic NF-κB inhibitor, IκBα . Moreover, the combined treatment prostratin+HDACI caused a more pronounced nucleosomal remodeling in the U1 viral promoter region than the treatments with the compounds alone. This more pronounced remodeling correlated with a synergistic reactivation of HIV-1 transcription following the combined treatment prostratin+HDACI, as demonstrated by measuring recruitment of RNA polymerase II to the 5'LTR and both initiated and elongated transcripts. The physiological relevance of the prostratin+HDACI synergism was shown in CD8+-depleted peripheral blood mononuclear cells from HAART-treated patients with undetectable viral load. Moreover, this combined treatment reactivated viral replication in resting CD4+ T cells isolated from similar patients. Our results suggest that combinations of different kinds of proviral activators may have important implications for reducing the size of latent HIV-1 reservoirs in HAART-treated patients.
Capping of nascent pre-mRNAs is thought to be a prerequisite for productive elongation and associated serine 2 phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (PolII). The mechanism mediating this link is unknown, but is likely to include the capping machinery and P-TEPb. We report that the fission yeast P-TEFb (Cdk9-Pch1) forms a complex with the cap-methyltransferase Pcm1 and these proteins colocalise on chromatin. Ablation of Cdk9 function through chemical genetics causes growth arrest and abolishes serine 2 phosphorylation on the PolII CTD. Strikingly, depletion of Pcm1 also leads to a dramatic decrease of phospho-serine 2. Chromatin immunoprecipitations show a severe decrease of chromatin-bound Cdk9-Pch1 when Pcm1 is depleted. On the contrary, Cdk9 is not required for association of Pcm1 with chromatin. Furthermore, compromising Cdk9 activity leads to a promoter-proximal PolII stalling and sensitivity to 6-azauracil, reflecting elongation defects. The in vivo data presented here strongly support the existence of a molecular mechanism where the capmethyltransferase recruits P-TEFb to chromatin, thereby ensuring that only properly capped transcripts are elongated.
The Hoxa2 gene has a fundamental role in vertebrate craniofacial and hindbrain patterning. Segmental control of Hoxa2 expression is crucial to its function and several studies have highlighted transcriptional regulatory elements governing its activity in distinct rhombomeres. Here, we identify a putative Hox–Pbx responsive cis-regulatory sequence, which resides in the coding sequence of Hoxa2 and is an important component of Hoxa2 regulation in rhombomere (r) 4. By using cell transfection and chromatin immunoprecipitation (ChIP) assays, we show that this regulatory sequence is responsive to paralogue group 1 and 2 Hox proteins and to their Pbx co-factors. Importantly, we also show that the Hox–Pbx element cooperates with a previously reported Hoxa2 r4 intronic enhancer and that its integrity is required to drive specific reporter gene expression in r4 upon electroporation in the chick embryo hindbrain. Thus, both intronic as well as exonic regulatory sequences are involved in Hoxa2 segmental regulation in the developing r4. Finally, we found that the Hox–Pbx exonic element is embedded in a larger 205-bp long ultraconserved genomic element (UCE) shared by all vertebrate genomes. In this respect, our data further support the idea that extreme conservation of UCE sequences may be the result of multiple superposed functional and evolutionary constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.