An electrochemical method for annealing the pore sizes of nanoporous gold is reported. The pore sizes of nanoporous gold can be increased by electrochemical cycling with the upper potential limit being just at the onset of gold oxide formation. This study has been performed in electrolyte solutions including potassium chloride, sodium nitrate and sodium perchlorate. Scanning electron microscopy images have been used for ligament and pore size analysis. We examine the modifications of nanoporous gold due to annealing using electrochemical impedance spectroscopy, and cyclic voltammetry and offer a comparison of the surface coverage using the gold oxide stripping method as well as the method in which electrochemically accessible surface area is determined by using a diffusing redox probe. The effect of additives adsorbed on the nanoporous gold surface when subjected to annealing in different electrolytes as well as the subsequent structural changes in nanoporous gold are also reported. The effect of the annealing process on the application of nanoporous gold as a substrate for glucose electro-oxidation is briefly examined.
Monoliths of nanoporous gold (np-Au) were modified with self-assembled monolayers of octadecanethiol (C18-SH), 8-mercaptooctyl α-D-mannopyranoside (αMan-C8-SH), and 8-mercapto-3,6-dioxaoctanol (HO-PEG2-SH), and the loading was assessed using thermogravimetric analysis (TGA). Modification with mixed SAMs containing αMan-C8-SH (at a 0.20 mole fraction in the SAM forming solution) with either octanethiol or HO-PEG2-SH was also investigated. The np-Au monoliths modified with αMan-C8-SH bind the lectin Concanavalin A (Con A), and the additional mass due to bound protein was assessed using TGA analysis. A comparison of TGA traces measured before and after exposure of HO-PEG2-SH modified np-Au to Con A showed that the non-specific binding of Con A was minimal. In contrast, np-Au modified with octanethiol showed a significant mass loss due to non-specifically adsorbed Con A. A significant mass loss was also attributed to binding of Con A to bare np-Au monoliths. TGA revealed a mass loss due to the binding of Con A to np-Au monoliths modified with pure αMan-C8-SH. The use of mass losses determined by TGA to compare the binding of Con A to np-Au monoliths modified by mixed SAMs of αMan-C8-SH and either octanethiol or HO-PEG2-SH revealed that binding to mixed SAM modified surfaces is specific for the mixed SAMs with HO-PEG2-SH but shows a significant contribution from non-specific adsorption for the mixed SAMs with octanethiol. Minimal adsorption of immunoglobulin G (IgG) and peanut agglutinin (PNA) towards the mannoside modified np-Au monoliths was demonstrated. A greater mass loss was found for Con A bound onto the monolith than for either IgG or PNA, signifying that the mannose presenting SAMs in np-Au retain selectivity for Con A. TGA data also provide evidence that Con A bound to the αMan-C8-SH modified np-Au can be eluted by flowing a solution of methyl α-D-mannopyranoside through the structure. The presence of Con A proteins on the modified np-Au surface was also confirmed using atomic force microscopy (AFM). The results highlight the potential for application of carbohydrate modified np-Au monoliths to glycoscience and glycotechnology and demonstrate that they can be used for capture and release of carbohydrate binding proteins in significant quantities.
The surface of nanoporous gold (np-Au) monoliths was modified via a flow method with the lectin Concanavalin A (Con A) to develop a substrate for separation and extraction of glycoproteins. Self-assembled monolayers (SAMs) of lipoic acid (LA) on the np-Au monoliths were prepared followed by activation of the terminal carboxyl groups to create amine reactive esters that were utilized in the immobilization of Con A. Thermogravimetric analysis (TGA) was used to determine the surface coverages of LA and Con A on np-Au monoliths which were found to be 1.31 × 1018 molecules m−2 and 1.85 × 1015 molecules m−2, respectively. An in situ solution depletion method was developed that enabled surface coverage characterization without damaging the substrate and suggesting the possibility of regeneration. Using this method, the surface coverages of LA and Con A were found to be 0.989 ×1018 molecules m−2 and 1.32 × 1015 molecules m−2, respectively. The selectivity of the Con A-modified np-Au monolith for the high mannose-containing glycoprotein ovalbumin (OVA) versus negative control non-glycosylated bovine serum albumin (BSA) was demonstrated by the difference in the ratio of the captured molecules to the immobilized Con A molecules, with OVA:Con A = 2.3 and BSA:Con A = 0.33. Extraction of OVA from a 1:3 mole ratio mixture with BSA was demonstrated by the greater amount of depletion of OVA concentration during the circulation with the developed substrate. A significant amount of captured OVA was eluted using α-methyl mannopyranoside as a competitive ligand. This work is motivated by the need to develop new materials for chromatographic separation and extraction substrates for use in preparative and analytical procedures in glycomics.
Monolithic column materials offer great advantages as chromatographic media in bioseparations and as solid-supports in biocatalysis. These single-piece porous materials have an interconnected ligament structure that limits the void volume inside the column, thus increasing the efficiency without sacrificing the permeability. The preparation of monolithic materials is easy, reproducible and has available a wide range of chemistries to utilize. Complex, heterogeneous and isobaric glycan structures require preparation methods that may include glycan release, separation and enrichment prior to a comprehensive and site-specific glycosylation analysis. Monolithic column materials aid that demand, as shown by the results reported by the research works presented in this review. These works include selective capture of glycans and glycoproteins via their interactions with lectins, boronic acids, hydrophobic, and hydrophilic/polar functional groups on monolith surfaces. It also includes immobilization of enzymes trypsin and PNGase F on monoliths to digest and deglycosylate glycoproteins and glycopeptides, respectively. The use of monolithic capillary columns for glycan separations through nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) and coupling these columns to MS instruments to create multidimensional systems show the potential in the development of miniaturized, high-throughput and automated systems of glycan separation and analysis.
There is continuous effort towards developing monolithic materials as solid supports for the separation, enrichment, and digestion of glycoproteins. The intention of this review is to discuss and summarize work reported in this area during the period 2015–2021 as a follow-up to our prior review. Reports from the past three decades have already proven the advantages of monolithic materials, such as the ease with which they can be prepared and functionalized, their high permeability and low resistance to mass transfer, and their stability over a wide range of pH. Recent works on glycoprotein analysis introduce different strategies in using monolithic materials specifically in separation, enrichment, and identification of glycoproteins, glycopeptides, and free glycans. A majority of these are focused on boronic acid affinity-based technique and others on lectin affinity and HILIC-based techniques. There are also newly developed ligands that utilize different interactions with glycans, such as encapsulation into β-cyclodextrin vesicles, CH- or OH-π interactions with fullerenes, immunoaffinity with monoclonal antibodies, H-bonding interactions with metallophthalocyanines, coordination interactions with cobalt phthalocyanine tetracarboxylic acid, and hydrophilic interaction with cyclodextrin molecular tubes, zwitterionic iminodiacetic acid, and boric acid. Recent strategies for developing on-line, multidimensional systems use immobilized monolithic enzyme reactors (IMERs) for high-throughput glycoprotein analysis. These works serve as contributions to better understand glycan structure-function relationship, as glycoproteins are now widely accepted disease biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.