This study examined a non-insecticidal tactic for suppressing boll weevil, Anthonomus grandis grandis Boheman, damage to cotton, Gossypium hirsutum L. In cage assays, kaolin, a reflective white mineral, applied to excised cotton squares or to the cotton foliage, initially resulted in lower levels of boll weevil injury to squares than nontreated squares. Boll weevil oviposition and feeding on kaolin-treated squares and squares on kaolin-treated cotton plants increased when nontreated squares and cotton plants were in short supply. A laboratory assay and field trials suggested that boll weevils distinguished between cotton plots based on color differences caused by kaolin and this appeared to influence levels of damage to squares. Random sampling in small plots indicated that oviposition damage to squares in plots treated with kaolin was reduced (P < 0.05) compared with nontreated controls, except when rain washed the kaolin off the foliage. Lint yield differences were not detected between the small plots, but the kaolin-treated small plots yielded as much as 2.36 times more cotton lint than a large but unreplicated adjacent nontreated control plot, and up to 1.39 times more than another large but unreplicated adjacent plot sprayed twice with preemptive applications of azinphosmethyl when cotton squares were first developing (pinhead stage). Potentially important avenues for future research on boll weevil injury suppression using kaolin are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.