In metazoa, nuclear pore complexes (NPCs) are assembled from constituent nucleoporins by two distinct mechanisms: in the re-forming nuclear envelope at the end of mitosis and into the intact nuclear envelope during interphase. Here, we show that the nucleoporin Nup153 is required for NPC assembly during interphase but not during mitotic exit. It functions in interphasic NPC formation by binding directly to the inner nuclear membrane via an N-terminal amphipathic helix. This binding facilitates the recruitment of the Nup107-160 complex, a crucial structural component of the NPC, to assembly sites. Our work further suggests that the nuclear transport receptor transportin and the small GTPase Ran regulate the interaction of Nup153 with the membrane and, in this way, direct pore complex assembly to the nuclear envelope during interphase.
Nuclear pore formation depends on membrane curvature. The membrane deforming activity of Nup53 is required for nuclear pore complex (NPC) assembly during interphase.
The metazoan nucleus is disassembled and re-built at every mitotic cell division. The nuclear envelope, including nuclear pore complexes, breaks down at the beginning of mitosis to accommodate the capture of massively condensed chromosomes by the spindle apparatus. At the end of mitosis, a nuclear envelope is newly formed around each set of segregating and de-condensing chromatin. We review the current understanding of the membrane restructuring events involved in the formation of the nuclear membrane sheets of the envelope, the mechanisms governing nuclear pore complex assembly and integration in the nascent nuclear membranes, and the regulated coordination of these events with chromatin de-condensation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.