Centrality metrics evaluate paths between all possible pairwise combinations of sites on a landscape to rank the contribution of each site to facilitating ecological flows across the network of sites. Computational advances now allow application of centrality metrics to landscapes represented as continuous gradients of habitat quality. This avoids the binary classification of landscapes into patch and matrix required by patch-based graph analyses of connectivity. It also avoids the focus on delineating paths between individual pairs of core areas characteristic of most corridor- or linkage-mapping methods of connectivity analysis. Conservation of regional habitat connectivity has the potential to facilitate recovery of the gray wolf (Canis lupus), a species currently recolonizing portions of its historic range in the western United States. We applied 3 contrasting linkage-mapping methods (shortest path, current flow, and minimum-cost-maximum-flow) to spatial data representing wolf habitat to analyze connectivity between wolf populations in central Idaho and Yellowstone National Park (Wyoming). We then applied 3 analogous betweenness centrality metrics to analyze connectivity of wolf habitat throughout the northwestern United States and southwestern Canada to determine where it might be possible to facilitate range expansion and interpopulation dispersal. We developed software to facilitate application of centrality metrics. Shortest-path betweenness centrality identified a minimal network of linkages analogous to those identified by least-cost-path corridor mapping. Current flow and minimum-cost-maximum-flow betweenness centrality identified diffuse networks that included alternative linkages, which will allow greater flexibility in planning. Minimum-cost-maximum-flow betweenness centrality, by integrating both land cost and habitat capacity, allows connectivity to be considered within planning processes that seek to maximize species protection at minimum cost. Centrality analysis is relevant to conservation and landscape genetics at a range of spatial extents, but it may be most broadly applicable within single- and multispecies planning efforts to conserve regional habitat connectivity.
With this publication, we conclude a >10 year development effort, and assert that our HexSim model is mature, robust, extremely well tested, and ready for adoption by the research community. The HexSim model, documentation, worked examples, and other materials can be freely obtained from the website www.hexsim.net.
The approach to taking decisions on the management of land contamination has changed markedly over 30 years. Change has been rapid with policy makers and regulators, practitioners and researchers having to keep pace with new technologies, assessment criteria and diagnostic methods for their measurement, techniques for risk analysis and the frameworks that support decision-makers in their efforts to regenerate historically contaminated land. Having progressed from simple hazard assessment through to 'sustainability appraisal' we might now consider piecing together the experience of decision-making for managing land contamination. Here, we critically review recent developments with a view to considering how better decisions can be made by integrating the decision tools available. We are concerned with the practicality of approach and the issues that arise for practitioners as decision criteria are broadened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.