Large volumes of gridded climate data have become available in recent years including interpolated historical data from weather stations and future predictions from general circulation models. These datasets, however, are at various spatial resolutions that need to be converted to scales meaningful for applications such as climate change risk and impact assessments or sample-based ecological research. Extracting climate data for specific locations from large datasets is not a trivial task and typically requires advanced GIS and data management skills. In this study, we developed a software package, ClimateNA, that facilitates this task and provides a user-friendly interface suitable for resource managers and decision makers as well as scientists. The software locally downscales historical and future monthly climate data layers into scale-free point estimates of climate values for the entire North American continent. The software also calculates a large number of biologically relevant climate variables that are usually derived from daily weather data. ClimateNA covers 1) 104 years of historical data (1901–2014) in monthly, annual, decadal and 30-year time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of model projections for 2011–2100. Multiple general circulation models (GCMs) were included for both paleo and future periods, and two representative concentration pathways (RCP4.5 and 8.5) were chosen for future climate data.
The velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However, to apply the algorithm for conservation and management purposes, additional information is needed to improve realism at local scales. For example, destination information is needed to ensure that vectors describing speed and direction of required migration do not point toward a climatic cul-de-sac by pointing beyond mountain tops. Here, we present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Otherwise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate matches. With source and destination information available, forward and backward velocities can be calculated allowing useful inferences about conservation of species (present-to-future velocities) and management of species populations (future-to-present velocities).
Viability analysis of well-selected focal species can complement ecosystemlevel conservation planning by revealing thresholds in habitat area and landscape connectivity. Mammalian carnivores are good candidates for focal species because their distributional patterns often strongly reflect regional-scale population processes. We incorporated focal species analysis of four carnivore species, fisher (Martes pennanti), lynx (Lynx canadensis), wolverine (Gulo gulo), and grizzly bear (Ursus arctos), into a regional conservation plan for the Rocky Mountains of the United States and Canada. We developed empirical habitat models for fisher, lynx, and wolverine based on a geographically extensive data set of trapping and sighting records. Predictor variables derived directly from satellite imagery were significantly correlated with carnivore distribution and allowed us to predict distribution in areas lacking detailed vegetation data. Although we lacked similar distributional data for grizzly bear, we predicted bear habitat by adapting and extrapolating previously published, regional-scale habitat models. Predicted habitat for grizzly bear has high overlap with that for wolverine, intermediate overlap with fisher, and low overlap with lynx. High-quality habitats for fisher and lynx, unlike those for wolverine and grizzly bear, are not strongly associated with low levels of human population and roads. Nevertheless, they are naturally fragmented by topography and vegetation gradients and are poorly represented in existing protected areas. Areas with high biological productivity and low human impact are valuable habitat for all four species but are limited in extent. Predicted habitat values for lynx and wolverine are significantly correlated with trapping data from an area outside the extent of the original data set. This supports the use of empirical distribution models as the initial stage in a regional-scale monitoring program. Our results suggest that a comprehensive conservation strategy for carnivores in the region must consider the needs of several species, rather than a single, presumed umbrella species. Coordinated planning across multiple ownerships is necessary to prevent further fragmentation of carnivore habitat, especially in the U.S.-Canada border region.
We conducted a systematic conservation assessment of the 10.8‐million‐ha Greater Yellowstone Ecosystem (GYE), integrating three basic approaches to conservation planning: protecting special elements, representing environmental variation, and securing habitat for focal species (grizzly bear [ Ursus arctos], wolf [Canis lupus], and wolverine [Gulo gulo]). Existing protected areas encompass 27% of the GYE but fail to capture many biological hotspots of the region or to represent all natural communities. Using a simulated annealing site‐selection algorithm, combined with biological and environmental data based on a geographic information system and static ( habitat suitability) and dynamic ( population viability) modeling of focal species, we identified unprotected sites within the GYE that are biologically irreplaceable and vulnerable to degradation. Irreplaceability scores were assigned to 43 megasites (aggregations of planning units) on the basis of nine criteria corresponding to quantitative conservation goals. Expert opinion supplemented quantitative data in determining vulnerability scores. If all megasites were protected, the reserved area of the GYE would expand by 43% (to 70%) and increase protection of known occurrences of highly imperiled species by 71% (to 100%) and of all special elements by 62% (to 92%). These new reserves would also significantly increase representation of environmental variation and capture critical areas for focal species. The greatest gains would be achieved by protecting megasites scoring highest in irreplaceability and vulnerability. Protection of 15 high‐priority megasites would expand reserved area by 22% and increase the overall achievement of goals by 30%. Protection of highly imperiled species and representation of geoclimatic classes would increase by 46% and 49%, respectively. Although conservation action must be somewhat opportunistic, our method aids decision‐making by identifying areas that will contribute the most to explicit conservation goals.
The effectiveness of a system of reserves may be compromised under climate change as species' habitat shifts to nonreserved areas, a problem that may be compounded when well-studied vertebrate species are used as conservation umbrellas for other taxa. The Northwest Forest Plan was among the first efforts to integrate conservation of wideranging focal species and localized endemics into regional conservation planning. We evaluated how effectively the plan's focal species, the Northern Spotted Owl, acts as an umbrella for localized species under current and projected future climates and how the regional system of reserves can be made more resilient to climate change. We used the program MAXENT to develop distribution models integrating climate data with vegetation variables for the owl and 130 localized species. We used the program ZONATION to identify a system of areas that efficiently captures habitat for both the owl and localized species and prioritizes refugial areas of climatic and topographic heterogeneity where current and future habitat for dispersal-limited species is in proximity. We projected future species' distributions based on an ensemble of contrasting climate models, and incorporating uncertainty between alternate climate projections into the prioritization process. Reserve solutions based on the owl overlap areas of high localized-species richness but poorly capture core areas of localized species' distribution. Congruence between priority areas across taxa increases when refugial areas are prioritized. Although corearea selection strategies can potentially increase the conservation value and resilience of regional reserve systems, they accentuate contrasts in priority areas between species and over time and should be combined with a broadened taxonomic scope and increased attention to potential effects of climate change. Our results suggest that systems of fixed reserves designed for resilience can increase the likelihood of retaining the biological diversity of forest ecosystems under climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.