Depth of Focus (DOF) and exposure latitude requirements have long been ambiguous. Techniques range from scaling values from previous generations to summing individual components from the scanner. Even more ambiguous is what critical dimension (CD) variation can be allowed to originate from dose and focus variation. In this paper we discuss a comprehensive approach to measuring focus variation that a process must be capable of handling. We also describe a detailed methodology to determine how much CD variation can come from dose and focus variation. This includes examples of the statistics used to combine individual components of CD, dose and focus variation.
A tool has been developed that can be used to characterize or validate a BEOL interconnect technology. It connects various process assumptions directly to electrical parameters including resistance. The resistance of narrow copper lines is becoming a challenging parameter, not only in terms of controlling its value but also understanding the underlying mechanisms. The resistance was measured for 45nm-node interconnects and compared to the theory of electron scattering. This work will demonstrate how valuable it is to directly link the electrical models to the physical on-wafer dimensions and in turn to the process assumptions. For example, one can generate a tolerance pareto for physical and or electrical parameters that immediately identifies those process sectors that have the largest contribution to the overall tolerance. It also can be used to easily generate resistance versus capacitance plots which provide a good BEOL performance gauge. Several examples for 45nm BEOL will be given to demonstrate the value of these tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.