Depth of Focus (DOF) and exposure latitude requirements have long been ambiguous. Techniques range from scaling values from previous generations to summing individual components from the scanner. Even more ambiguous is what critical dimension (CD) variation can be allowed to originate from dose and focus variation. In this paper we discuss a comprehensive approach to measuring focus variation that a process must be capable of handling. We also describe a detailed methodology to determine how much CD variation can come from dose and focus variation. This includes examples of the statistics used to combine individual components of CD, dose and focus variation.
The ever-shrinking lithography process window dictates that we maximize our process window, minimize process variation, and quantify the disturbances to an imaging process caused upstream of the imaging step. Relevant factors include across-wafer and wafer-to-wafer film thickness variation, wafer flatness, wafer edge effects, and design-induced topography. We present our effort to predict design-induced focus error hot spots based on prior knowledge of the wafer surface topography. This knowledge of wafer areas challenging the edge of our process window enables a constructive discussion with our design and integration team to prevent or mitigate focus error hot spots upstream of the imaging process. C 2010 Society of Photo-Optical Instrumentation Engineers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.