The synthesis of exotoxin A (ETA) by Pseudomonas aeruginosa is a complex, regulated event. Several ETA putative regulatory mutants of P. aeruginosa PA103 have previously been characterized (S. E. H. West, S. A. Kaye, A. N. Hamood, and B. H. Iglewski, Infect. Immun. 62:897-903, 1994). In addition to ETA production, these mutants, PA103-15, PA103-16, and PA103-19, were also deficient in the production of protease and in regA P1 promoter activity. RegA is a positive regulator of ETA transcription. We cloned a gene, designated vfr for virulence factor regulator, that restored ETA and protease production to parental levels in these mutants. In addition, transcription from the regA P1 promoter was restored. In Escherichia coli, when vfr was overexpressed from a phage T7 promoter, a protein with an apparent molecular mass of 28.5 kDa was produced. Analysis of the deduced amino acid sequence of vfr revealed that the expected protein is 67% identical and 91% similar over a 202-amino-acid overlap to the E. coli cyclic AMP receptor protein (CAP or Crp). The cloned vfr gene complemented the beta-galactosidase- and tryptophanase-deficient phenotypes of E. coli RZ1331, a crp deletion mutant. However, the E. coli crp gene under the control of the tac promoter did not complement the ETA-deficient or protease-deficient phenotype of PA103-15 or PA103-16. The ability of vfr to restore both ETA and protease production to these mutants suggests that vfr is a global regulator of virulence factor expression in P. aeruginosa.
The related family of virulence plasmids found in the three major pathogens of the gent-Yersinia all have the ability to encode a set of outer membrane proteins. In Y. enterocolitica and Y. pseudouberculosis, these proteins are major constituents of the outer membrane when their synthesis is fully induced. In contrast, they have been difficult to detect in Y. pestis. It has recently been established that Y. pestis does synthesize these proteins, but that they are rapidly degraded due to some activity determined by the 9.5-kilobase plasmid commonly found in Y. pestis strains. We show that mutations in the pla gene of this plasmid, which encodes both the plasminogen activator and coagulase activities, blocked this degradation. A cloned 1.4-kilobase DNA fragment carrying pla was also sufficient to cause degradation in the absence of the 9.5-kilobase plasmid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.