Hedgehog (Hh) and transforming growth factor-B (TGF-B) family members are involved in numerous overlapping processes during embryonic development, hair cycle, and cancer. Herein, we show that TGF
Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite tremendous progress in its molecular characterization. Indeed, PDA tumors harbor four signature somatic mutations1–4, and a plethora of lower frequency genetic events of uncertain significance5. Here, we used Sleeping Beauty (SB) transposon-mediated insertional mutagenesis6,7 in a mouse model of pancreatic ductal preneoplasia8 to identify genes that cooperate with oncogenic KrasG12D to accelerate tumorigenesis and promote progression. Our screen revealed new candidates and confirmed the importance of many genes and pathways previously implicated in human PDA. Interestingly, the most commonly mutated gene was the X-linked deubiquitinase Usp9x, which was inactivated in over 50% of the tumors. Although prior work had attributed a pro-survival role to USP9X in human neoplasia9, we found instead that loss of Usp9x enhances transformation and protects pancreatic cancer cells from anoikis. Clinically, low USP9X protein and mRNA expression in PDA correlates with poor survival following surgery, and USP9X levels are inversely associated with metastatic burden in advanced disease. Furthermore, chromatin modulation with trichostatin A or 5-aza-2′-deoxycytidine elevates USP9X expression in human PDA cell lines to suggest a clinical approach for certain patients. The conditional deletion of Usp9x cooperated with KrasG12D to rapidly accelerate pancreatic tumorigenesis in mice, validating their genetic interaction. Therefore, we propose USP9X as a major new tumor suppressor gene with prognostic and therapeutic relevance in PDA.
TGF-β and its signaling mediators, Smad2, -3, and -4, are involved with tumor suppression and promotion functions. Smad4 -/-mouse epidermis develops spontaneous skin squamous cell carcinomas (SCCs), and Smad3 -/-mice are resistant to carcinogen-induced skin cancer; however, the role of Smad2 in skin carcinogenesis has not been explored. In the present study, we found that Smad2 and Smad4, but not Smad3, were frequently lost in human SCCs. Mice with keratinocyte-specific Smad2 deletion exhibited accelerated formation and malignant progression of chemically induced skin tumors compared with WT mice. Consistent with the loss of Smad2 in poorly differentiated human SCCs, Smad2 -/-tumors were poorly differentiated and underwent epithelial-mesenchymal transition (EMT) prior to spontaneous Smad4 loss. Reduced E-cadherin and activation of its transcriptional repressor Snail were also found in Smad2 -/-mouse epidermis and occurred more frequently in Smad2-negative human SCCs than in Smad2-positive SCCs. Knocking down Snail abrogated Smad2 loss-associated EMT, suggesting that Snail upregulation is a major mediator of Smad2 loss-associated EMT. Furthermore, Smad2 loss led to a significant increase in Smad4 binding to the Snail promoter, and knocking down either Smad3 or Smad4 in keratinocytes abrogated Smad2 loss-associated Snail overexpression. Our data suggest that enhanced Smad3/Smad4-mediated Snail transcription contributed to Smad2 loss-associated EMT during skin carcinogenesis.
Background Direct oral anticoagulants (DOACs) have emerged as safe and effective alternatives to Vitamin-K antagonists for treatment and prevention of arterial and venous thrombosis. Due to their novelty, pharmacokinetic DOAC drug-drug interactions (DDIs) that result in clinical adverse events have not been well-documented. Objective This study aims to systematically review reported pharmacokinetic DDIs resulting in clinical adverse events through documented observational evidence to better inform clinicians in clinical practice. Methods A comprehensive literature review of EMBASE, MEDLINE, and Ovid HealthStar was conducted through March 10th, 2020. Two independent reviewers screened and extracted data from eligible articles according to pre-established inclusion and exclusion criteria. Articles reporting bleeding or thrombotic outcomes in non-controlled (observational) settings resulting from suggested pharmacokinetic DOAC DDIs were included. Results A total of 5567 citations were reviewed, of which 24 were included following data extraction. The majority were case reports ( n = 21) documenting a single adverse event resulting from a suspected DOAC DDI, while the remaining papers were a case series ( n = 1) and cohort studies ( n = 2). The most commonly reported interacting drugs were amiodarone and ritonavir (bleeding), and phenobarbital, phenytoin, and carbamazepine (thrombosis). Bleeding events more often resulted from a combined mechanism (P-glycoprotein AND CYP3A4 inhibition), whereas thrombotic events resulted from either combined OR single P-glycoprotein/CYP3A4 induction. Conclusion Current literature evaluating the real-world risk of DOAC DDIs is limited to few case reports and retrospective observational analyses. Clinicians are encouraged to continue to report suspected drug interactions resulting in adverse events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.