Carbohydrate Response Element Binding Protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.
γδ T cells are resident in AT and increase during diet-induced obesity. Their possible contribution to the inflammatory response that accompanies diet-induced obesity was investigated in mice after a 5 to 10 week milk HFD. The HFD resulted in significant increases in CD44(hi), CD62L(lo), and TNF-α(+) γδ T cells in eAT of WT mice. Mice deficient in all γδ T cells (TCRδ(-/-)) or only Vγ4 and Vγ6 subsets (Vγ4/6(-/-)) were compared with WT mice with regard to proinflammatory cytokine production and macrophage accumulation in eAT. Obesity among these mouse strains did not differ, but obese TCRδ(-/-) and Vγ4/6(-/-) mice had significantly reduced eAT expression of F4/80, a macrophage marker, and inflammatory mediators CCL2 and IL-6 compared with WT mice. Obese TCRδ(-/-) mice had significantly reduced CD11c(+) and TNF-α(+) macrophage accumulation in eAT after 5 and 10 weeks on the HFD, and obese Vγ4/6(-/-) mice had significantly increased CD206(+) macrophages in eAT after 5 weeks on the diet and significantly reduced macrophages after 10 weeks. Obese TCRδ(-/-) mice had significant reductions in systemic insulin resistance and inflammation in liver and skeletal muscle after longer-term HFD feeding (10 and 24 weeks). In vitro studies revealed that isolated γδ T cells directly stimulated RAW264.7 macrophage TNF-α expression but did not stimulate inflammatory mediator expression in 3T3-L1 adipocytes. These findings are consistent with a role for γδ T cells in the proinflammatory response that accompanies diet-induced obesity.
Nuotio-Antar AM, Hachey DL, Hasty AH. Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice. Am J Physiol Endocrinol Metab 293: E1517-E1528, 2007. First published September 18, 2007; doi:10.1152/ajpendo.00522.2007.-Glucocorticoids, which are well established to regulate body fat mass distribution, adipocyte lipolysis, hepatic gluconeogenesis, and hepatocyte VLDL secretion, are speculated to play a role in the pathology of metabolic syndrome. Recent focus has been on the activity of 11-hydroxysteroid dehydrogenase type 1 (11-HSD1), which is capable of regenerating, and thus amplifying, glucocorticoids in key metabolic tissues such as liver and adipose tissue. To determine the effects of global 11-HSD1 inhibition on metabolic syndrome risk factors, we subcutaneously injected "Western"-type diet-fed hyperlipidemic mice displaying moderate or severe obesity [LDL receptor (LDLR)-deficient (LDLR Ϫ/Ϫ ) mice and mice derived from heterozygous agouti (A y /a) and homozygous LDLR Ϫ/Ϫ breeding pairs (A y /a;LDLR Ϫ/Ϫ mice)] with the nonselective 11-HSD inhibitor carbenoxolone for 4 wk. Body composition throughout the study, end-point fasting plasma, and extent of hepatic steatosis and atherosclerosis were assessed. This route of treatment led to detection of high levels of carbenoxolone in liver and fat and resulted in decreased weight gain due to reduced body fat mass in both mouse models. However, only A y /a;LDLR Ϫ/Ϫ mice showed an effect of 11-HSD1 inhibition on fasting insulin and plasma lipids, coincident with a reduction in VLDL due to mildly increased VLDL clearance and dramatically decreased hepatic triglyceride production. A y /a;LDLR Ϫ/Ϫ mice also showed a greater effect of the drug on reducing atherosclerotic lesion formation. These findings indicate that subcutaneous injection of an 11-HSD1 inhibitor allows for the targeting of the enzyme in not only liver, but also adipose tissue, and attenuates many metabolic syndrome risk factors, with more pronounced effects in cases of severe obesity and hyperlipidemia.
Reduced de novo lipogenesis in adipose tissue, often observed in obese individuals, is thought to contribute to insulin resistance. Besides trapping excess glucose and providing for triglycerides and energy storage, endogenously synthesized lipids can function as potent signaling molecules. Indeed, several specific lipids and their molecular targets that mediate insulin sensitivity have been recently identified. Here, we report that carbohydrate-response element-binding protein (ChREBP), a transcriptional inducer of glucose use and de novo lipogenesis, controls the activity of the adipogenic master regulator peroxisome proliferator-activated receptor (PPAR)γ. Expression of constitutive-active ChREBP in precursor cells activated endogenous PPARγ and promoted adipocyte differentiation. Intriguingly, ChREBP-constitutive-active ChREBP expression induced PPARγ activity in a fatty acid synthase-dependent manner and by trans-activating the PPARγ ligand-binding domain. Reducing endogenous ChREBP activity by either small interfering RNA-mediated depletion, exposure to low-glucose concentrations, or expressing a dominant-negative ChREBP impaired differentiation. In adipocytes, ChREBP regulated the expression of PPARγ target genes, in particular those involved in thermogenesis, similar to synthetic PPARγ ligands. In summary, our data suggest that ChREBP controls the generation of endogenous fatty acid species that activate PPARγ. Thus, increasing ChREBP activity in adipose tissue by therapeutic interventions may promote insulin sensitivity through PPARγ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.