Foxp3-expressing regulatory T cells (Tregs) reside in tissues where they control inflammation and mediate tissue-specific functions. The skin of mice and humans contain a large number of Tregs; however, the mechanisms of how these cells function in skin remain largely unknown. Here, we show that Tregs facilitate cutaneous wound healing. Highly activated Tregs accumulated in skin early after wounding and specific ablation of these cells resulted in delayed wound re-epithelialization and kinetics of wound closure. Tregs in wounded skin attenuated IFNγ production and pro-inflammatory macrophage accumulation. Upon wounding, Tregs induce expression of the epidermal growth factor receptor (EGFR). Lineage-specific deletion of EGFR in Tregs resulted in reduced Treg accumulation and activation in wounded skin, delayed wound closure and increased pro-inflammatory macrophage accumulation. Taken together, our results reveal a novel role for Tregs in facilitating skin wound repair and suggest that Tregs utilize the EGFR pathway to mediate these effects.
Multicellular tumor spheroids are powerful in vitro models to perform preclinical chemosensitivity assays. We compare different methodologies to generate tumor spheroids in terms of resultant spheroid morphology, cellular arrangement and chemosensitivity. We used two cancer cell lines (MCF7 and OVCAR8) to generate spheroids using i) hanging drop array plates; ii) liquid overlay on ultra-low attachment plates; iii) liquid overlay on ultra-low attachment plates with rotating mixing (nutator plates). Analysis of spheroid morphometry indicated that cellular compaction was increased in spheroids generated on nutator and hanging drop array plates. Collagen staining also indicated higher compaction and remodeling in tumor spheroids on nutator and hanging drop arrays compared to conventional liquid overlay. Consequently, spheroids generated on nutator or hanging drop plates had increased chemoresistance to cisplatin treatment (20-60% viability) compared to spheroids on ultra low attachment plates (10-20% viability). Lastly, we used a mathematical model to demonstrate minimal changes in oxygen and cisplatin diffusion within experimentally generated spheroids. Our results demonstrate that in vitro methods of tumor spheroid generation result in varied cellular arrangement and chemosensitivity.
Background Innate immune cells such as macrophages are abundantly present within malignant ascites, where they share the microenvironment with ovarian cancer stem cells (CSC). Methods To mimic this malignant ascites microenvironment, we created a hanging-drop hetero-spheroid model to bring CSCs and macrophages in close association. Within these hetero-spheroids, CD68 + macrophages (derived from U937 or peripheral blood monocytes) make up ~ 20% of the population, while the rest are ovarian cancer cells and ovarian cancer stem cells (derived from the high grade serous ovarian cancer cell line, OVCAR3). Results Our results indicate that CSCs drive the upregulation of M2 macrophage marker CD206 within hetero-spheroids, compared to bulk ovarian cancer cells, implying an inherently more immuno-suppressive program. Moreover, an increased maintenance of elevated aldehyde dehydrogenase (ALDH) activity is noted within hetero-spheroids that include pre-polarized CD206 + M2 macrophages, implying a reciprocal interaction that drives pro-tumoral activation as well as CSC self-renewal. Consistent with enriched CSCs, we also observe increased levels of pro-tumoral IL-10 and IL-6 cytokines in the CSC/M2-macrophage hetero-spheroids. CSC/M2-macrophage hetero-spheroids are also less sensitive to the chemotherapeutic agent carboplatin and are subsequently more invasive in transwell assays. Using inhibitors of WNT secretion in both CSCs and macrophages, we found that CSC-derived WNT ligands drove CD206 + M2 macrophage activation, and that, conversely, macrophage-derived WNT ligands enriched ALDH + cells within the CSC compartment of hetero-spheroids. Upon examination of specific WNT ligand expression within the monocyte-derived macrophage system, we observed a significant elevation in gene expression for WNT5B . In CSCs co-cultured with macrophages within hetero-spheroids, increases in several WNT ligands were observed, and this increase was significantly inhibited when WNT5B was knocked down in macrophages. Conclusions Our data implies that macrophage- initiated WNT signaling could play a significant role in the maintenance of stemness, and the resulting phenotypes of chemoresistance and invasiveness. Our results indicate paracrine WNT activation during CSC/M2 macrophages interaction constitutes a positive feedback loop that likely contributes to the more aggressive phenotype, which makes the WNT pathway a potential target to reduce the CSC and M2 macrophage compartments in the tumor microenvironment. Electronic supplementary material The online version of this article (10.1186/s40425-019-0666-1) contains supplementary material, which is available to authorized users.
Chemoresistant ovarian cancers grow in suspension within the ascites fluid. To screen the effect of chemotherapeutics and biologics on resistant ovarian cancers with a personalized basis, we developed a 3D hanging drop spheroid platform. We initiated spheroids with primary aldehyde dehydrogenase-positive (ALDH) CD133 ovarian cancer stem cells (OvCSC) from different patient samples and demonstrated that stem cell progeny from harvested spheroids was similar to the primary tumor. OvCSC spheroids were utilized to initiate tumors in immunodeficient mice. Drug responses to cisplatin and ALDH-targeting compound or JAK2 inhibitor determined whether the OvCSC population within the spheroids could be targeted. Cells that escaped therapy were isolated and used to initiate new spheroids and model tumor reemergence in a personalized manner. OvCSC spheroids from different patients exhibited varying and personalized responses to chemotherapeutics. Xenografts were established from OvCSC spheroids, even with a single spheroid. Distinct responses to therapy were observed in distinct primary tumor xenografts similar to those observed in spheroids. Spheroids resistant to cisplatin/ALDH inhibitor therapy had persistent, albeit lower ALDH expression and complete loss of CD133 expression, whereas those resistant to cisplatin/JAK2 inhibitor therapy were enriched for ALDH cells. Our 3D hanging drop suspension platform can be used to propagate primary OvCSCs that represent individual patient tumors effectively by differentiating and initiating tumors in mice. Therefore, our platform can be used to study cancer stem cell biology and model tumor reemergence to identify new targeted therapeutics from an effective personalized medicine standpoint..
γδ T cells are resident in AT and increase during diet-induced obesity. Their possible contribution to the inflammatory response that accompanies diet-induced obesity was investigated in mice after a 5 to 10 week milk HFD. The HFD resulted in significant increases in CD44(hi), CD62L(lo), and TNF-α(+) γδ T cells in eAT of WT mice. Mice deficient in all γδ T cells (TCRδ(-/-)) or only Vγ4 and Vγ6 subsets (Vγ4/6(-/-)) were compared with WT mice with regard to proinflammatory cytokine production and macrophage accumulation in eAT. Obesity among these mouse strains did not differ, but obese TCRδ(-/-) and Vγ4/6(-/-) mice had significantly reduced eAT expression of F4/80, a macrophage marker, and inflammatory mediators CCL2 and IL-6 compared with WT mice. Obese TCRδ(-/-) mice had significantly reduced CD11c(+) and TNF-α(+) macrophage accumulation in eAT after 5 and 10 weeks on the HFD, and obese Vγ4/6(-/-) mice had significantly increased CD206(+) macrophages in eAT after 5 weeks on the diet and significantly reduced macrophages after 10 weeks. Obese TCRδ(-/-) mice had significant reductions in systemic insulin resistance and inflammation in liver and skeletal muscle after longer-term HFD feeding (10 and 24 weeks). In vitro studies revealed that isolated γδ T cells directly stimulated RAW264.7 macrophage TNF-α expression but did not stimulate inflammatory mediator expression in 3T3-L1 adipocytes. These findings are consistent with a role for γδ T cells in the proinflammatory response that accompanies diet-induced obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.