Evidence is mounting that the gut-brain axis plays an important role in mental diseases fueling mechanistic investigations to provide a basis for future targeted interventions. However, shotgun metagenomic data from treatment-naïve patients are scarce hampering comprehensive analyses of the complex interaction between the gut microbiota and the brain. Here we explore the fecal microbiome based on 90 medication-free schizophrenia patients and 81 controls and identify a microbial species classifier distinguishing patients from controls with an area under the receiver operating characteristic curve (AUC) of 0.896, and replicate the microbiome-based disease classifier in 45 patients and 45 controls (AUC = 0.765). Functional potentials associated with schizophrenia include differences in short-chain fatty acids synthesis, tryptophan metabolism, and synthesis/degradation of neurotransmitters. Transplantation of a schizophrenia-enriched bacterium, Streptococcus vestibularis, appear to induces deficits in social behaviors, and alters neurotransmitter levels in peripheral tissues in recipient mice. Our findings provide new leads for further investigations in cohort studies and animal models.
Background Innate immune cells such as macrophages are abundantly present within malignant ascites, where they share the microenvironment with ovarian cancer stem cells (CSC). Methods To mimic this malignant ascites microenvironment, we created a hanging-drop hetero-spheroid model to bring CSCs and macrophages in close association. Within these hetero-spheroids, CD68 + macrophages (derived from U937 or peripheral blood monocytes) make up ~ 20% of the population, while the rest are ovarian cancer cells and ovarian cancer stem cells (derived from the high grade serous ovarian cancer cell line, OVCAR3). Results Our results indicate that CSCs drive the upregulation of M2 macrophage marker CD206 within hetero-spheroids, compared to bulk ovarian cancer cells, implying an inherently more immuno-suppressive program. Moreover, an increased maintenance of elevated aldehyde dehydrogenase (ALDH) activity is noted within hetero-spheroids that include pre-polarized CD206 + M2 macrophages, implying a reciprocal interaction that drives pro-tumoral activation as well as CSC self-renewal. Consistent with enriched CSCs, we also observe increased levels of pro-tumoral IL-10 and IL-6 cytokines in the CSC/M2-macrophage hetero-spheroids. CSC/M2-macrophage hetero-spheroids are also less sensitive to the chemotherapeutic agent carboplatin and are subsequently more invasive in transwell assays. Using inhibitors of WNT secretion in both CSCs and macrophages, we found that CSC-derived WNT ligands drove CD206 + M2 macrophage activation, and that, conversely, macrophage-derived WNT ligands enriched ALDH + cells within the CSC compartment of hetero-spheroids. Upon examination of specific WNT ligand expression within the monocyte-derived macrophage system, we observed a significant elevation in gene expression for WNT5B . In CSCs co-cultured with macrophages within hetero-spheroids, increases in several WNT ligands were observed, and this increase was significantly inhibited when WNT5B was knocked down in macrophages. Conclusions Our data implies that macrophage- initiated WNT signaling could play a significant role in the maintenance of stemness, and the resulting phenotypes of chemoresistance and invasiveness. Our results indicate paracrine WNT activation during CSC/M2 macrophages interaction constitutes a positive feedback loop that likely contributes to the more aggressive phenotype, which makes the WNT pathway a potential target to reduce the CSC and M2 macrophage compartments in the tumor microenvironment. Electronic supplementary material The online version of this article (10.1186/s40425-019-0666-1) contains supplementary material, which is available to authorized users.
The response rates of Head and Neck Squamous Cell Carcinoma (HNSCC) to checkpoint blockade are below 20%. We aim to develop a mechanism-based vaccine to prevent HNSCC immune escape. We performed RNA-Seq of sensitive and resistant HNSCC cells to discover central pathways promoting resistance to immune killing. Using biochemistry, animal models, HNSCC microarray, and immune cell deconvolution, we assessed the role of SOX2 in inhibiting STING-type I interferon (IFN-I) signaling-mediated antitumor immunity. To bypass SOX2-potentiated STING suppression, we engineered a novel tumor antigen-targeted nanosatellite vehicle to enhance the efficacy of STING agonist and sensitize SOX2-expressing HNSCC to checkpoint blockade. The DNA-sensing defense response is the most suppressed pathway in immune-resistant HNSCC cells. We identified SOX2 as a novel inhibitor of STING. SOX2 facilitates autophagy-dependent degradation of STING and inhibits IFN-I signaling. SOX2 potentiates an immunosuppressive microenvironment and promotes HNSCC growth in an IFN-I-dependent fashion. Our unique nanosatellite vehicle significantly enhances the efficacy of STING agonist. We show that the E6/E7-targeted nanosatellite vaccine expands the tumor-specific CD8 T cells by over 12-fold in the tumor microenvironment and reduces tumor burden. A combination of nanosatellite vaccine with anti-PD-L1 significantly expands tumor-specific CTLs and limits the populations expressing markers for exhaustion, resulting in more effective tumor control and improved survival. SOX2 dampens the immunogenicity of HNSCC by targeting the STING pathway for degradation. The nanosatellite vaccine offers a novel and effective approach to enhance the adjuvant potential of STING agonist and break cancer tolerance to immunotherapy. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.