While there clearly is an intimate relationship between astrocytes and microglia, few studies have examined these potentially dynamic interactions. In this study, cytokine-mediated communication between microglia and astrocytes under inflammatory conditions was investigated. We have previously shown that activated microglia produce Interleukin (IL)-10, a regulatory cytokine that plays an important role in resolving neuroinflammation. Nonetheless, the mechanism by which IL-10 attenuates pro-inflammatory cytokine expression in the brain is unclear. Here we show that IL-10 re-directed astrocytes regulate the activation of microglia in a Transforming growth factor (TGF)-β dependent manner. In support of this concept, astrocytes in the brain maintained higher IL-10 receptor (IL-10R1) expression and primary astrocytes in culture were markedly more sensitive to the anti-inflammatory effects of IL-10 compared to microglia. Moreover, studies using primary cultures and an astrocyte-microglia co-culture system revealed that astrocytes mediated the anti-inflammatory effects of IL-10 on microglia through the production of TGFβ. For instance, only when astrocytes were present did IL-10 stimulation reduce the expression of IL-1β and increase expression of anti-inflammatory mediators fractalkine receptor (CX3CR1) and interleukin 4 receptor-α (IL-4Rα) in microglia. Importantly, these IL-10-astrocyte dependent effects on microglia were blocked by a TGFβ inhibitor. Furthermore, inhibition of TGFβ signaling in the brain resulted in prolonged sickness behavior and amplified pro-inflammatory cytokine expression in mice challenged with lipopolysaccharide (LPS). Taken together, IL-10 stimulated the production of TGFβ by astrocytes, which in turn, attenuated microglial activation. Overall, these findings provide novel insight into the mechanisms by which astrocytes modulate microglia under inflammatory conditions.
In several models of aging, microglia become more inflammatory and reactive to immune challenges. For example, peripheral LPS injection causes exaggerated microglial activation associated with prolonged sickness and depressive-like behavior in aged BALB/c mice. Therefore, the purpose of this study was to determine the extent to which age-related amplified microglial activation was associated with reduced sensitivity to the anti-inflammatory and M2 promoting cytokines interleukin (IL)-10 and IL-4. In initial studies with adult mice, LPS induced a time-dependent increase in M1 and M2 mRNA profiles in microglia. Furthermore, peripheral LPS injection markedly increased surface expression of IL-4 receptor-alpha (IL-4Rα), but not IL-10 receptor-1 (IL-10R1) on microglia. In BV-2 cells, IL-4, but not IL-10, re-directed LPS-activated microglia towards an M2 phenotype. Based on these findings, comparisons of M1 and M2 activation profiles, induction of IL-4Rα, and sensitivity to IL-4 were determined in microglia from adult (3–4 mo) and aged (18–22 mo) mice. In aged microglia, LPS promoted an exaggerated and prolonged M1 and M2 profile compared to adults. Moreover, IL-4Rα protein was not increased on aged microglia following LPS injection. To determine the consequence of impaired IL-4Rα upregulation, adult and aged mice were injected with LPS and activated microglia were then isolated and treated ex vivo with IL-4. While ex vivo IL-4 induced an M2 profile in activated microglia from adult mice, activated microglia from aged mice retained a prominent M1 profile. These data indicate that activated microglia from aged mice are less sensitive to the anti-inflammatory and M2-promoting effects of IL-4.
Neural stem cells (NSCs) exist throughout life in the ventricular-subventricular zone (V-SVZ) of the mammalian forebrain. During aging NSC function is diminished through an unclear mechanism. In this study, we establish microglia, the immune cells of the brain, as integral niche cells within the V-SVZ that undergo ageassociated repositioning in the V-SVZ. Microglia become activated early before NSC deficits during aging resulting in an antineurogenic microenvironment due to increased inflammatory cytokine secretion. These ageassociated changes were not observed in non-neurogenic brain regions, suggesting V-SVZ microglia are specialized. Using a sustained inflammatory model in young adult mice, we induced microglia activation and inflammation that was accompanied by reduced NSC proliferation in the V-SVZ. Furthermore, in vitro studies revealed secreted factors from activated microglia reduced proliferation and neuron production compared to secreted factors from resting microglia. Our results suggest that age-associated chronic inflammation contributes to declines in NSC function within the aging neurogenic niche.
Background:Brain-derived neurotrophic factor (BDNF) deficiency confers vulnerability to stress, but the mechanisms are unclear. BDNF+/- mice exhibit behavioral, physiological, and neurochemical changes following low-level stress that are hallmarks of major depression. After immune challenge, neuroinflammation-induced changes in tryptophan metabolism along the kynurenine pathway mediate depressive-like behaviors.Methods:We hypothesized that BDNF+/- mice would be more susceptible to stress-induced neuroinflammation and kynurenine metabolism, so BDNF+/- or wild-type littermate mice were subject to repeated unpredictable mild stress. Proinflammatory cytokine expression and kynurenine metabolites were measured.Results:Unpredictable mild stress did not induce neuroinflammation. However, only wild-type mice produced the neuroprotective factors interleukin-10 and kynurenic acid in response to repeated unpredictable mild stress. In BDNF+/- mice, kynurenine was metabolized preferentially to the neurotoxic intermediate 3-hydroxykynurenine following repeated unpredictable mild stress.Conclusions:Our data suggest that BDNF may modulate kynurenine pathway metabolism during stress and provide a novel molecular mechanism of vulnerability and resilience to the development of stress-precipitated psychiatric disorders.
Protandim is a dietary supplement with potent antioxidant properties. We hypothesized that Protandim would inhibit malignant progression of ductal carcinoma in situ (DCIS). A pre‐malignant human breast cancer cell line (MCF10DCIS.com) was grown in collagen type I for 1 week and then cultured for 2 more weeks in the presence or absence of a growth factor (GF) combination of TGF‐beta and CXCL12, 20ng/mL each. In the presence of GF, most cells exhibited long processes and formed interlacing networks and stellate aggregates. Numerous genes and cytokines involved in cancer progression, inflammation, and differentiation were up‐regulated. Bipotency was verified by IHC for pancytokeratin and alpha smooth muscle actin. Additional groups were dosed with 4‐hydroxytamoxifen (2.5 micromolar), Protandim (8 micrograms/mL), or vehicle (0.1% DMSO). In the Protandim and 4‐hydroxytamoxifen groups, more cells displayed a rounded shape with fewer processes. In the cytokine array, the following decreases by Protandim and 4‐hydroxytamoxifen (respectively) were observed: platelet‐derived growth factor (PGDF): 55% & 27%; interleukin 5 (IL‐5): 81% & 76%; monocyte chemotactic protein1 (MCP‐1): 84% & 76%; angiogenin: 68% & 77%; granulocyte‐macrophage colony‐stimulating factor (GM‐CSF): 63% & 44%; interleukin 6 (IL‐6): 77% & 79%. These results suggest Protandim may suppress DCIS progression. (NIH/NCRR)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.