Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude.
AdS spacetime has been shown numerically to be unstable against a large class of arbitrarily small perturbations. In [1], the authors presented a preliminary study of the effects on stability of changing the local dynamics by adding a Gauss-Bonnet term to the Einstein action. Here we provide further details as well as new results with improved numerical methods. In particular, we elucidate new structure in Choptuik scaling plots. We also provide evidence of chaotic behavior at the transition between immediate horizon formation and horizon formation after the matter pulse reflects from the AdS conformal boundary. Finally, we present data suggesting the formation of naked singularities in spacetimes with ADM mass below the algebraic bound for black hole formation.
Observational and model data are used to study the radiative feedbacks during the El Niño–Southern Oscillation (ENSO) cycle. We extend the previous works by analyzing the feedbacks with respect to not only top‐of‐atmosphere (TOA) but also the surface and atmospheric radiation budgets, using a newly developed set of radiation kernels. We find that the tropical radiative budgets undergo distinctive variations during ENSO. The radiative perturbation is especially significant for the atmospheric energy budget. We find that the cloud feedback during the developing phase of ENSO heats the atmosphere over the west and central Pacific differentially, which acts to strengthen the development. We also find that a prominent cloud feedback bias persists in the newer version global climate models. This bias results from wrong extent of compensation between longwave and shortwave effects, which points to the importance of validating the radiative sensitivity of clouds in the general circulation models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.