With approximately 30% of nonhuman primate species listed as critically endangered, the window of opportunity to conserve primates is closing fast. In this article, we focus on the degree to which publications in field primatology are biased in favor of particular taxa and field sites. We examined more than 29,000 peer‐reviewed articles and identified 876 field visits to 349 field sites. We found a highly clumped distribution by site and species. We also examined publication ethical statements and the extent to which they acknowledged local human communities (<5%). Due to a lack of consistency across publications, we provide recommendations for improving ethical statements and for evaluating research impact. Given the plight of primate biodiversity, these results suggest broader coverage of primate species and geographies, as well as more attention to the local human communities whose support is necessary if the intent is to have primate species in the wild in the 22nd century.
Ultimately, these methods will help researchers identify more precisely how primate gait kinematics respond to the complexity of arboreal habitats, furthering our understanding of the adaptive context in which primate quadrupedalism evolved.
The grasping capabilities and gait kinematics characteristic of primates are often argued to be adaptations for safely moving on small terminal branches. The goal of this study was to identify whether Eastern gray squirrels (Sciurus carolinensis) -arboreal rodents that frequently move and forage on small branches, lack primate-like grasping and gait patterns, and arguably represent extant analogs of a stem primate ancestor -adjust gait kinematics to narrow and non-horizontal branches. We studied locomotor kinematics of free-ranging and laboratory-housed squirrels moving over various substrates. We used high-speed video to film 1) a population of free-ranging squirrels moving on natural substrates and 2) laboratory-housed squirrels moving on horizontal poles. Substrates were coded as small, medium, or large relative to squirrel trunk diameter, and as inclined, declined, or horizontal. Free-ranging squirrels used more gallops and half-bounds on small and medium sized substrates, and more high-impact bounds, with reduced limb lead durations, on declined substrates. Laboratory squirrels moved at higher speeds than free-ranging squirrels and responded to decreasing diameter by using more gallops and half-bounds, lowering speed, and -controlling for speed -increasing mean duty factor, mean number of supporting limbs, and relative forelimb lead duration. Our inability to detect substantial diameter or orientation-related gait adjustments in the wild may be due to a limited accounting of confounding influences (e.g., substrate compliance).Ultimately, studies assessing stability measures (e.g., center of mass fluctuations, peak vertical force) are required to assess whether primates' enhanced grasping and gait patterns engender performance advantages on narrow or oblique substrates.
Arboreal environments present considerable biomechanical challenges for animals moving and foraging among substrates varying in diameter, orientation and compliance. Most studies of quadrupedal gait kinematics in primates and other arboreal mammals have focused on symmetrical walking gaits and the significance of diagonal sequence gaits. Considerably less research has examined asymmetrical gaits, despite their prevalence in small-bodied arboreal taxa. Here, we examined whether and how free-ranging callitrichine primates adjust asymmetrical gait kinematics to changes in substrate diameter and orientation, as well as how variation in gait kinematics affects substrate displacement. We used high-speed video to film free-ranging Saguinus tripartitus and Cebuella pygmaea inhabiting the Tiputini Biodiversity Station, Ecuador. We found that S. tripartitus used bounding and half-bounding gaits on larger substrates versus gallops and symmetrical gaits on smaller substrates, and also shifted several kinematic parameters consistent with attenuating forces transferred from the animal to the substrate. Similarly, C. pygmaea shifted from high-impact bounding gaits on larger substrates to using more half-bounding gaits on smaller substrates; however, kinematic adjustments to substrate diameter were not as profound as in S. tripartitus. Both species adjusted gait kinematics to changes in substrate orientation; however, gait kinematics did not significantly affect empirical measures of substrate displacement in either species. Because of their small body size, claw-like nails and reduced grasping capabilities, callitrichines arguably represent extant biomechanical analogs for an early stage in primate evolution. As such, greater attention should be placed on understanding asymmetrical gait dynamics for insight into hypotheses concerning early primate locomotor evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.