A perithecial ascomycete, Spataporthe taylori gen. et sp. nov., represented by >70 sporocarps is preserved by cellular permineralization in marine carbonate concretions dated at the Valanginian-Hauterivian boundary (Early Cretaceous) from Vancouver Island, British Columbia, Canada. The spheroid perithecia with lumina 330-470 mm wide and 220-320 mm high are densely distributed and entirely immersed in the tissues of a coniferous leaf. The perithecial wall consists of an outer layer of large pseudoparenchyma and an inner layer of thin filamentous nature. Perithecial necks are incompletely preserved due to taphonomic abrasion; they have a bell-shaped chamber at the base and a narrow channel, with longitudinally aligned hyphae above. The basal chamber of the neck is filled with a plug of pseudoparenchyma, which subsequently disintegrates to form a peripheral collar; periphyses are present on the basal chamber walls. A pseudoparenchymatous hymenium lines the bottom of perithecia. Asci are clavate, with thinly tapered bases, and small (30-47 mm long and 12-20 mm wide at tip), ornamented with minute papillae. They become detached from the hymenium to float freely in the perithecium. No unequivocal ascospores were found, although smaller units are present in some of the asci. The combination of immersed perithecia with complex wall structure and a well-defined hymenium, absence of paraphyses, and persistent, detachable inoperculate asci is consistent with order Diaporthales of class Sordariomycetes. The small clavate asci are comparable to those found in family Gnomoniaceae. Perithecioid ascomata are rare in the fossil record, and bona fide perithecia are known with certainty only from the Early Devonian Rhynie Chert and Cenozoic amber. Spataporthe taylori contributes a well-characterized Early Cretaceous occurrence, which is also the oldest to date, to the scarce fossil record of the Sordariomycetes and a second taxon to the fungal flora of the locality, which also includes a basidiomycete. As the oldest representative of the Diaporthales, Spataporthe provides a minimum age (136 Ma) for the order and a direct calibration point for studies of divergence times in the ascomycetes.
Doliodus problematicus (NBMG 10127), from the Lower Devonian of New Brunswick, Canada (approx. 397-400 Mya) is the earliest sharklike jawed vertebrate (gnathostome) in which the pectoral girdle and fins are well preserved. Its pectoral endoskeleton included sharklike expanded paired coracoids, but Doliodus also possessed an "acanthodian-like" array of dermal spines, described here for the first time. Doliodus provides the strongest anatomical evidence to date that chondrichthyans arose from "acanthodian" fishes by exhibiting an ana¬ tomical mosaic of "acanthodian" and sharklike features.
Summary
An abrupt transition in the fossil record separates Early Devonian euphyllophytes with a simple structure from a broad diversity of structurally complex Middle–Late Devonian plants. Morphological evolution and phylogeny across this transition are poorly understood due to incomplete sampling of the fossil record. We document a new Early Devonian radiatopsid and integrate it in analyses addressing euphyllophyte relationships.
Anatomically preserved Emsian fossils (402–394 Ma) from the Battery Point Formation (Gaspé, Quebec, Canada) are studied in serial sections. The phylogenetic analysis is based on a matrix of 31 taxa and 50 characters emphasising vegetative morphology (41 discrete, nine continuous).
The new plant, Kenrickia bivena gen. et sp. nov., is one of very few structurally complex euphyllophytes documented in the Early Devonian. Inclusion of Kenrickia overturns previously established phylogenetic relationships among Radiatopses, reiterating the need for increased density of Early Devonian taxon sampling. Kenrickia is recovered as the sister lineage to all other radiatopsids, a clade in which paraphyletic Stenokoleales led to a lignophyte clade where archaeopterids and seed plants fall into sister clades.
Our results shed light on early euphyllophyte relationships and evolution, indicating early exploration of structural complexity by multiple lineages and reiterating the potential of a single origin of secondary growth in euphyllophytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.