As an early member of the extant genus Picea, this seed cone extends the fossil record of Picea to the Valanginian Stage of the Early Cretaceous, ca. 136 Ma, thereby resolving a ghost lineage predicted by molecular divergence analyses, and offers new insight into the evolution of Pinaceae.
Premise
Anatomically preserved evidence for a novel clade of gymnosperms emphasizes diversity of seed plants immediately prior to the appearance of angiosperm fossils in the paleontological record.
Methods
Cupulate seeds from the Early Cretaceous Apple Bay locality (Vancouver Island) are described from serial cellulose acetate peels and three‐dimensional reconstruction. Phylogenetic context is assessed through the comparative analysis of gymnosperm seed producing fructifications and maximum parsimony analysis of a revised morphological data set for seed plant phylogeny.
Results
Xadzigacalix quatsinoensis gen. et sp. nov. is characterized by an orthotropous ovule with an elongated micropyle and complex integument, enclosed within a radial cupule. The micropylar canal is elongated; and the nucellus extends into the micropyle to seal the post pollination ovule. Except at the apex of the micropyle, the seed is completely enclosed by a parenchymatous cupule with ca. 20 axially elongated secretory ducts. The cupulate seed is produced upon a triangular woody stele, consisting of a parenchymatous pith surrounded by radially aligned tracheids. The stele produces three short terete traces that terminate within the base of the cupule as transfusion tissue at the seed chalaza.
Conclusions
Organography, vascularization, nature of the integument and nucellus, and configuration of the micropylar canal distinguish Xadzigacalix quatsinoensis from all other gymnosperm clades. Cladistic analyses suggest the new plant may have affinities with gnetophytes or angiosperms. These results are complemented with a critical re‐evaluation of ovulate structures for Mesozoic gymnosperms, providing new insight into plant diversity immediately antecedent to the explosive diversification of flowering plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.