In nontransformed bovine mammary epithelial cells, the intrinsic apoptosis inducer anisomycin (ANS) induces IGFBP-3 expression and nuclear localization and knockdown of IGFBP-3 attenuates ANS-induced apoptosis. Others have shown in prostate cancer cells that exogenous IGFBP-3 induces apoptosis by facilitating nuclear export of the orphan nuclear receptor Nur77 and its binding partner, retinoid X receptor-α (RXRα). The goal of the present work was to determine whether endogenous IGFBP-3 plays a role in ANS-induced apoptosis by facilitating nuclear transport of Nur77 and/or RXRα in nontransformed cells. Knockdown of Nur77 with siRNA decreased ANS-induced cleavage of caspase-3 and -7 and their downstream target, PARP, indicating a role for Nur77 in ANS-induced apoptosis. In cells transfected with IGFBP-3, IGFBP-3 associated with RXRα but not Nur77 under basal conditions, however, IGFBP-3 co-precipitated with phosphorylated forms of both proteins in ANS-treated cells. Indirect immunofluorescence and cell fractionation techniques showed that ANS induced phosphorylation and transport of Nur77 from the nucleus to the cytoplasm and these effects were attenuated by knockdown of IGFBP-3. These data suggest that endogenous IGFBP-3 plays a role in intrinsic apoptosis by facilitating phosphorylation and nuclear export of Nur77 to the cytoplasm where it exerts its apoptotic effect. Whether this mechanism involves a physical association between endogenous IGFBP-3 and Nur77 or RXRα remains to be determined.
Mammary epithelial cell (MEC) number is an important determinant of milk production in lactating dairy cows. IGF-I increases IGF binding protein-3 (IGFBP-3) production in these cells, which plays a role in its ability to enhance proliferation. In the present study, we show that the apoptotic factor anisomycin (ANS) also increases IGFBP-3 mRNA and protein in a dose- and concentration-dependent manner that mirrors activation of caspase-3 and -7, with significant increases in both IGFBP-3 protein and caspase activation observed by 3 h. Knock-down of IGFBP-3 with small interfering (si) RNA attenuated the ability of ANS to induce apoptosis, while knock-down of IGFBP-2, the other major IGFBP made by bovine MEC, had no effect. Reducing IGFBP-3 also decreased the ability of ANS to induce mitochondrial cytochrome c release, indicating its involvement in the intrinsic apoptotic pathway. In contrast, transfection with IGFBP-3 in the absence of ANS failed to induce apoptosis. Since both the mitogen IGF-I and the apoptotic inducer ANS increase IGFBP-3 production in MEC, we proposed that cellular localization might determine IGFBP-3 action. While both IGF-I and ANS stimulated the release of IGFBP-3 into conditioned media, only ANS induced nuclear localization of IGFBP-3. A pan-caspase inhibitor had no effect on ANS-induced nuclear localization of IGFBP-3, indicating that nuclear entry of IGFBP-3 precedes caspase activation. Treatment with IGF-I had no effect on ANS-induced nuclear localization, but did block ANS-induced apoptosis. In summary, our data indicate that IGFBP-3 plays a role in stress-induced apoptosis that may require nuclear localization in non-transformed MEC.
IGF-binding protein (IGFBP)-3 is a multifunctional protein that can exert IGF-independent effects on apoptosis. Anisomycin (ANS) is a potent inducer of IGFBP-3 production in bovine mammary epithelial cells (MECs), and knockdown of IGFBP-3 attenuates ANS-induced apoptosis. IGFBP-3 is present in the nucleus and the conditioned media in response to ANS. The goal of this study was to determine whether ribotoxic stress induced by ANS or a second ribotoxin, deoxynivalenol (DON), specifically regulates transport of IGFBP-3 to the nucleus and to determine the pathway by which it traffics. In ribotoxin-treated cells, both endogenous IGFBP-3 and transfected IGFBP-3 translocated to the nucleus. Inhibition of the nuclear transport protein importin-β with importazole reduced ribotoxin-induced nuclear IGFBP-3. Immunoprecipitation studies showed that ANS induced the association of IGFBP-3 and importin-β, indicating that ribotoxins specifically induce nuclear translocation via an importin-β‒dependent mechanism. To determine whether secretion of IGFBP-3 is required for nuclear localization, cells were treated with Pitstop 2 or brefeldin A to inhibit clathrin-mediated endocytosis or overall protein secretion, respectively. Neither inhibitor affected nuclear localization of IGFBP-3. Although the IGFBP-3 present in both the nucleus and conditioned media was glycosylated, secreted IGFBP-3 exhibited a higher molecular weight. Deglycosylation experiments with endoglycosidase Hf and PNGase indicated that secreted IGFBP-3 completed transit through the Golgi apparatus, whereas intracellular IGFBP-3 exited from the endoplasmic reticulum before transit through the Golgi. In summary, ANS and DON specifically induced nuclear localization of nonsecreted IGFBP-3 via an importin-β‒mediated event, which may play a role in their ability to induce apoptosis in MECs.
IGFBP‐3 has both mitogenic and apoptotic functions in normal mammary epithelial cells (MEC) as well as breast cancer cell lines. The factors that determine whether IGFBP‐3 promotes cellular survival or death are unclear. Since both the mitogen IGF‐I and the apoptotic inducer anisomycin (ANS) increase IGFBP‐3 production in MEC, we proposed that cellular localization may determine IGFBP‐3 action. While both IGF‐I and ANS stimulated the release of IGFBP‐3 into conditioned media, only ANS induced nuclear localization of IGFBP‐3. Time course analysis showed that ANS induced nuclear localization of IGFBP‐3 and caspase activation across a similar time line, with significant increases in each parameter observed by 3 hr. Knockdown of IGFBP‐3 with small interfering (si)RNA reduced nuclear IGFBP‐3 and attenuated ANS‐induced apoptosis measured by cleavage of caspase‐3 and‐7 and PARP. A pan‐caspase inhibitor had no effect on ANS‐induced nuclear localization of IGFBP‐3, suggesting that nuclear entry of IGFBP‐3 precedes caspase activation. Although IGFBP‐3 has a nuclear localization sequence, siRNA knockdown of the nuclear transport protein importin‐β did not affect nuclear localization of IGFBP‐3 in response to ANS, indicating it does not utilize importin‐β for nuclear entry. In summary, our data indicate that localization of IGFBP‐3 is a controlled event regulated by cellular stress. This project was supported by National Research Initiative Competitive Grant no. 2009‐35206‐05210 from the USDA National Institute of Food and Agriculture to WSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.