Large quantities of spent hydrodesulfurization (HDS) catalysts are available from petrochemical industry. Disposal of spent catalyst is a problem as it falls under the category of hazardous industrial waste due to its vanadium concentration. Most of these catalysts are usually supported on alumina containing a variable percentage of elements such as nickel or molybdenum. Hence these catalysts contain environmentally critical, and economically valuable metals such as molybdenum, vanadium, and, nickel. In this paper, a spent HDS catalyst was treated with caustic soda solution. Parameters such as temperature, time, and NaOH solution concentration have been studied thoroughly, in order to settle the appropriate conditions for the maximum recovery of molybdenum and vanadium. Under the best leaching conditions (20% w NaOH, room temperature, 2 h) about 95% recovery of Mo and V was achieved, and the recovery of nickel obtained was of 99% in the form of NiAlO 4 .
Coumaric acid can be obtained from basic hydrolysis of coumarin, through a reaction process consisting on opening the lactone ring and cis-trans isomerization. Parameters such as reaction time, temperature, NaOH concentration, solvent and reaction atmosphere, have been thoroughly studied and analyzed, in order to determine the appropriate conditions for the maximum conversion efficiency of coumarin into coumaric acid. Experimental results show that the best conditions are a 1 hour reaction time, at 160˚C, with a 20% sodium hydroxide aqueous solution, and in an inert reaction atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.