The Hajj is an Islamic pilgrimage that involves four main holy sites in Makkah, Saudi Arabia. As the number of participants (pilgrims) attending these events has been increasing over the years, challenges have arisen: overcrowding at the sites resulting in congestion, pilgrims getting lost, stampedes, injuries and even deaths. Although Hajj management authorities have employed up-to-date facilities to manage the events (e.g., state-of-the-art infrastructure and communication technologies, CCTV monitoring, live crowd analysis, time scheduling, and large well-trained police forces and scouts), there is still overcrowding and "unexpected" problems that can occur at the events. These problems can be studied and mitigated by prior simulation, which allows for preparation and deployment of the most appropriate plans for crowd management at Hajj events. This paper presents a comprehensive survey of crowd modelling and simulation studies referring to Hajj.
Hajj is a mass gathering event that takes place annually in Makkah, Saudi Arabia. Typically, around three million people participate in the event and perform rituals that involve their movements within strict space and time restrictions. Despite efforts by the Hajj organisers, such massive crowd gathering and movement cause overcrowding related problems at the Hajj sites. Several previous simulation studies on Hajj focused on the rituals individually. Tawaf, followed by Sayee, are two important rituals that are performed by all the pilgrims at the same venue on the same day. These events have a strong potential for crowd buildup and related problems. As opposed the previous works in the literature, in this paper we study these two events jointly, rather than separately. We use ExtendSim, a Discrete Event Simulation tool, to integrate the Tawaf and Sayee rituals into one model. The validated model was applied to a wide range of scenarios where different percentages of pilgrims were allocated to the various Tawaf and Sayee areas. The effect of such allocations on the time to complete Tawaf and Sayee indicate strategies for managing these two key Hajj rituals.
Hajj, the Muslim pilgrimage, is a large mass gathering event that involves performing rituals at several sites on specific days and times in a fixed order, thereby requiring transport of pilgrims between sites. For the past two decades, Hajj transport has relied on conventional and shuttle buses, train services, and pilgrims walking along pedestrian routes that link these sites. To ensure smooth and efficient transport during Hajj, specific groups of pilgrims are allocated with the cooperation of Hajj authorities to specific time windows, modes, and routes. However, the large number of pilgrims, delays and changes in bus schedules/timetables, and occasional lack of coordination between transport modes have often caused congestion or delays in pilgrim transfer between sites, with a cascading effect on transport management. This study focuses on modelling and simulating the transport of pilgrims between the sites using a discrete event simulation tool called “ExtendSim”. Three transport modules were validated, and different scenarios were developed. These scenarios consider changes in the percentages of pilgrims allocated to each transport mode and the scheduling of various modes. The results can aid authorities to make informed decisions regarding transport strategies for managing the transport infrastructure and fleets. The proposed solutions could be implemented with judicious allocation of resources, through pre-event planning and real-time monitoring during the event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.