Bóna (2007) [6] studied the distribution of ascents, plateaux and descents in the class of Stirling permutations, introduced by Gessel and Stanley (1978) [13]. Recently, Janson (2008) [17] showed the connection between Stirling permutations and plane recursive trees and proved a joint normal law for the parameters considered by Bóna. Here we will consider generalized Stirling permutations extending the earlier results of Bóna (2007) [6] and Janson (2008) [17], and relate them with certain families of generalized plane recursive trees, and also (k + 1)-ary increasing trees. We also give two different bijections between certain families of increasing trees, which both give as a special case a bijection between ternary increasing trees and plane recursive trees. In order to describe the (asymptotic) behaviour of the parameters of interests, we study three (generalized) Pólya urn models using various methods.
We apply the concept of parking functions to functional digraphs of mappings by considering the nodes as parking spaces and the directed edges as one-way streets: Each driver has a preferred parking space and starting with this node he follows the edges in the graph until he either finds a free parking space or all reachable parking spaces are occupied. If all drivers are successful we speak of a parking function for the mapping. We transfer well-known characterizations of parking functions to mappings. Via analytic combinatorics techniques we study the total number M n,m of mapping parking functions, i.e., the number of pairs (f, s) with f : [n] → [n] an n-mapping and s ∈ [n] m a parking function for f with m drivers, yielding exact and asymptotic results. Moreover, we describe the phase change behaviour appearing at m = n/2 for M n,m and relate it to previously studied combinatorial contexts.
ABSTRACT:Simply generated families of trees are described by the equation T (z) = ϕ(T (z)) for their generating function. If a tree has n nodes, we say that it is increasing if each node has a label ∈ {1, . . . , n}, no label occurs twice, and whenever we proceed from the root to a leaf, the labels are increasing. This leads to the concept of simple families of increasing trees. Three such families are especially important: recursive trees, heap ordered trees, and binary increasing trees. They belong to the subclass of very simple families of increasing trees, which can be characterized in 3 different ways.This paper contains results about these families as well as about polynomial families (the function ϕ(u) is just a polynomial). The random variable of interest is the level of the node (labelled) j, in random trees of size n ≥ j. For very simple families, this is independent of n, and the limiting distribution is Gaussian. For polynomial families, we can prove this as well for j, n → ∞ such that n−j is fixed. Additional results are also given. These results follow from the study of certain trivariate generating functions and Hwang's quasi power theorem. They unify and extend earlier results by Devroye, Mahmoud, and others.
Simple families of increasing trees can be constructed from simply generated tree families, if one considers for every tree of size n all its increasing labellings, i.e., labellings of the nodes by distinct integers of the set {1, . . . , n} in such a way that each sequence of labels along any branch starting at the root is increasing. Three such tree families are of particular interest: recursive trees, plane-oriented recursive trees and binary increasing trees. We study the quantity degree of node j in a random tree of size n and give closed formulae for the probability distribution and all factorial moments for those subclass of tree families, which can be constructed via a tree evolution process. Furthermore limiting distribution results of this parameter are given, which completely characterize the phase change behavior depending on the growth of j compared to n.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.