We apply the concept of parking functions to functional digraphs of mappings by considering the nodes as parking spaces and the directed edges as one-way streets: Each driver has a preferred parking space and starting with this node he follows the edges in the graph until he either finds a free parking space or all reachable parking spaces are occupied. If all drivers are successful we speak of a parking function for the mapping. We transfer well-known characterizations of parking functions to mappings. Via analytic combinatorics techniques we study the total number M n,m of mapping parking functions, i.e., the number of pairs (f, s) with f : [n] → [n] an n-mapping and s ∈ [n] m a parking function for f with m drivers, yielding exact and asymptotic results. Moreover, we describe the phase change behaviour appearing at m = n/2 for M n,m and relate it to previously studied combinatorial contexts.
This paper contains an extensive combinatorial analysis of the single-peaked domain restriction and investigates the likelihood that an election is single-peaked. We provide a very general upper bound result for domain restrictions that can be defined by certain forbidden configurations. This upper bound implies that many domain restrictions (including the single-peaked restriction) are very unlikely to appear in a random election chosen according to the Impartial Culture assumption. For single-peaked elections, this upper bound can be refined and complemented by a lower bound that is asymptotically tight. In addition, we provide exact results for elections with few voters or candidates. Moreover, we consider the Pólya urn model and the Mallows model and obtain lower bounds showing that single-peakedness is considerably more likely to appear for certain parameterizations.
In 1998 a long-lost proposal for an election law by Gottlob Frege (1848–1925) was rediscovered in the Thüringer Universitäts- und Landesbibliothek in Jena, Germany. The method that Frege proposed for the election of representatives of a constituency features a remarkable concern for the representation of minorities. Its core idea is that votes cast for unelected candidates are carried over to the next election, while elected candidates incur a cost of winning. We prove that this sensitivity to past elections guarantees a proportional representation of political opinions in the long run. We find that through a slight modification of Frege’s original method even stronger proportionality guarantees can be achieved. This modified version of Frege’s method also provides a novel solution to the apportionment problem, which is distinct from all of the best-known apportionment methods, while still possessing noteworthy proportionality properties.
The Permutation Pattern Matching problem, asking whether a pattern permutation $\pi$ is contained in a permutation $\tau$, is known to be NP-complete. In this paper we present two polynomial time algorithms for special cases. The first algorithm is applicable if both $\pi$ and $\tau$ are $321$-avoiding; the second is applicable if $\pi$ and $\tau$ are skew-merged. Both algorithms have a runtime of $O(kn)$, where $k$ is the length of $\pi$ and $n$ the length of $\tau$.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.