Liquid democracy is a proxy voting method where proxies are delegable. We propose and study a game-theoretic model of liquid democracy to address the following question: when is it rational for a voter to delegate her vote? We study the existence of pure-strategy Nash equilibria in this model, and how group accuracy is affected by them. We complement these theoretical results by means of agent-based simulations to study the effects of delegations on group's accuracy on variously structured social networks. * This paper (without Appendix) appears in the proceedings of AAAI'19. We are indebted to the anonymous reviewers of IJCAI/ECAI'18 and AAAI'19 for many helpful comments on earlier versions of this paper. We are also grateful to the participants of the LAMSADE seminar at Paris Dauphine University, and the THEMA seminar at University Cergy-Pontoise where this work was presented, for many helpful comments and suggestions. Daan Bloembergen has received funding in the framework of the joint programming initiative ERA-
We consider the problem of selecting a fixed-size committee based on approval ballots. It is desirable to have a committee in which all voters are fairly represented. Aziz et al. (2015a; 2017) proposed an axiom called extended justified representation (EJR), which aims to capture this intuition; subsequently, Sanchez-Fernandez et al. (2017) proposed a weaker variant of this axiom called proportional justified representation (PJR). It was shown that it is coNP-complete to check whether a given committee provides EJR, and it was conjectured that it is hard to find a committee that provides EJR. In contrast, there are polynomial-time computable voting rules that output committees providing PJR, but the complexity of checking whether a given committee provides PJR was an open problem. In this paper, we answer open questions from prior work by showing that EJR and PJR have the same worst-case complexity: we provide two polynomial-time algorithms that output committees providing EJR, yet we show that it is coNP-complete to decide whether a given committee provides PJR. We complement the latter result by fixed-parameter tractability results.
The goal of multi-winner elections is to choose a fixed-size committee based on voters’ preferences. An important concern in this setting is representation: large groups of voters with cohesive preferences should be adequately represented by the election winners. Recently, Aziz et al. proposed two axioms that aim to capture this idea: justified representation (JR) and its strengthening extended justified representation (EJR). In this paper, we extend the work of Aziz et al. in several directions. First, we answer an open question of Aziz et al., by showing that Reweighted Approval Voting satisfies JR for k = 3; 4; 5, but fails it for k >= 6. Second, we observe that EJR is incompatible with the Perfect Representation criterion, which is important for many applications of multi-winner voting, and propose a relaxation of EJR, which we call Proportional Justified Representation (PJR). PJR is more demanding than JR, but, unlike EJR, it is compatible with perfect representation, and a committee that provides PJR can be computed in polynomial time if the committee size divides the number of voters. Moreover, just like EJR, PJR can be used to characterize the classic PAV rule in the class of weighted PAV rules. On the other hand, we show that EJR provides stronger guarantees with respect to average voter satisfaction than PJR does.
In this paper we introduce a new voting formalism to support long-term collective decision making: perpetual voting rules. These are voting rules that take the history of previous decisions into account. Due to this additional information, perpetual voting rules may offer temporal fairness guarantees that cannot be achieved in singular decisions. In particular, such rules may enable minorities to have a fair (proportional) influence on the decision process and thus foster long-term participation of minorities. This paper explores the proposed voting rules via an axiomatic analysis as well as a quantitative evaluation by computer simulations. We identify two perpetual voting rules as particularly recommendable in long-term collective decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.