We consider approval-based committee voting, i.e. the setting where each voter approves a subset of candidates, and these votes are then used to select a fixedsize set of winners (committee). We propose a natural axiom for this setting, which we call justified representation (JR). This axiom requires that if a large enough group of voters exhibits agreement by supporting the same candidate, then at least one voter in this group has an approved candidate in the winning committee. We show that for every list of ballots it is possible to select a committee that provides JR. However, it turns out that several prominent approval-based voting rules may fail to output such a committee. In particular, while Proportional Approval Voting (PAV) always outputs a committee that provides JR, Reweighted Approval Voting (RAV), a tractable approximation to PAV, does not have this property. We then introduce a stronger version of the JR axiom, which we call extended justified representation (EJR), and show that PAV satisfies EJR, while other rules we consider do not; indeed, EJR can be used to characterize PAV within the class of weighted PAV rules. We also consider several other questions related to JR and EJR, including the relationship between JR/EJR and core stability, and the complexity of the associated algorithmic problems.
The classical multiwinner rules are designed for particular purposes. For example, variants of k-Borda are used to find k best competitors in judging contests while the Chamberlin-Courant rule is used to select a diverse set of k products. These rules represent two extremes of the multiwinner world. At times, however, one might need to find an appropriate trade-off between these two extremes. We explore continuous transitions from k-Borda to Chamberlin-Courant and study intermediate rules.
Publisher's description: Cooperative game theory is a branch of (micro-)economics that studies the behavior of self-interested agents in strategic settings where binding agreements among agents are possible. Our aim in this book is to present a survey of work on the computational aspects of cooperative game theory. We begin by formally defining transferable utility games in characteristic function form, and introducing key solution concepts such as the core and the Shapley value. We then discuss two major issues that arise when considering such games from a computational perspective: identifying compact representations for games, and the closely related problem of efficiently computing solution concepts for games. We survey several formalisms for cooperative games that have been proposed in the literature, including, for example, cooperative games defined on networks, as well as general compact representation schemes such as MC-nets and skill games. As a detailed case study, we consider weighted voting games: a widely-used and practically important class of cooperative games that inherently have a natural compact representation. We investigate the complexity of solution concepts for such games, and generalizations of them.We briefly discuss games with non-transferable utility and partition function games. We then overview algorithms for identifying welfare-maximizing coalition structures and methods used by rational agents to form coalitions (even under uncertainty), including bargaining algorithms. We conclude by considering some developing topics, applications, and future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.