Publisher's description: Cooperative game theory is a branch of (micro-)economics that studies the behavior of self-interested agents in strategic settings where binding agreements among agents are possible. Our aim in this book is to present a survey of work on the computational aspects of cooperative game theory. We begin by formally defining transferable utility games in characteristic function form, and introducing key solution concepts such as the core and the Shapley value. We then discuss two major issues that arise when considering such games from a computational perspective: identifying compact representations for games, and the closely related problem of efficiently computing solution concepts for games. We survey several formalisms for cooperative games that have been proposed in the literature, including, for example, cooperative games defined on networks, as well as general compact representation schemes such as MC-nets and skill games. As a detailed case study, we consider weighted voting games: a widely-used and practically important class of cooperative games that inherently have a natural compact representation. We investigate the complexity of solution concepts for such games, and generalizations of them.We briefly discuss games with non-transferable utility and partition function games. We then overview algorithms for identifying welfare-maximizing coalition structures and methods used by rational agents to form coalitions (even under uncertainty), including bargaining algorithms. We conclude by considering some developing topics, applications, and future research directions.
In the usual models of cooperative game theory, the outcome of a coalition formation process is either the grand coalition or a coalition structure that consists of disjoint coalitions. However, in many domains where coalitions are associated with tasks, an agent may be involved in executing more than one task, and thus may distribute his resources among several coalitions. To tackle such scenarios, we introduce a model for cooperative games with overlapping coalitions-or overlapping coalition formation (OCF) games. We then explore the issue of stability in this setting. In particular, we introduce a notion of the core, which generalizes the corresponding notion in the traditional (non-overlapping) scenario. Then, under some quite general conditions, we characterize the elements of the core, and show that any element of the core maximizes the social welfare. We also introduce a concept of balancedness for overlapping coalitional games, and use it to characterize coalition structures that can be extended to elements of the core. Finally, we generalize the notion of convexity to our setting, and show that under some natural assumptions convex games have a non-empty core. Moreover, we introduce two alternative notions of stability in OCF that allow a wider range of deviations, and explore the relationships among the corresponding definitions of the core, as well as the classic (non-overlapping) core and the Aubin core. We illustrate the general properties of the three cores, and also study them from a computational perspective, thus obtaining additional insights into their fundamental structure.
Coalition formation is a central problem in multiagent systems research, but most models assume common knowledge of agent types. In practice, however, agents are often unsure of the types or capabilities of their potential partners, but gain information about these capabilities through repeated interaction. In this paper, we propose a novel Bayesian, model-based reinforcement learning framework for this problem, assuming that coalitions are formed (and tasks undertaken) repeatedly. Our model allows agents to refine their beliefs about the types of others as they interact within a coalition. The model also allows agents to make explicit tradeoffs between exploration (forming "new" coalitions to learn more about the types of new potential partners) and exploitation (relying on partners about which more is known), using value of information to define optimal exploration policies. Our framework effectively integrates decision making during repeated coalition formation under type uncertainty with Bayesian reinforcement learning techniques. Specifically, we present several learning algorithms to approximate the optimal Bayesian solution to the repeated coalition formation and type-learning problem, providing tractable means to ensure good sequential performance. We evaluate our algorithms in a variety of settings, showing that one method in particular exhibits consistently good performance in practice. We also demonstrate the ability of our model to facilitate knowledge transfer across different dynamic tasks.
In this work, we adopt a cooperative game theoretic approach in order to tackle the social ridesharing (SR) problem, where a set of commuters, connected through a social network, form coalitions and arrange one-time rides at short
Virtual Power Plants (VPPs) are fast emerging as a viable means of integrating small and distributed energy resources (DERs), like wind and solar, into the electricity supply network (Grid). VPPs are formed via the aggregation of a large number of DERs, so that they exhibit the characteristics of a traditional generator in terms of predictability and robustness. In this work, we promote the formation of such "cooperative" VPPs (CVPPs) using techniques from the field of distributed Artificial Intelligence and game theory. In particular, we design a payment mechanism that encourages DERs to join CVPPs with increased size and visibility to the network operator. Our method is based on strictly proper scoring rules and incentivises the provision of accurate predictions of expected electricity generation from member DERs, which aids in the planning of the supply schedule at the Grid. We empirically evaluate our approach using the real-world setting of 16 commercial wind farms in the UK, and we show that it incentivises real DERs to form CVPPs, and outperforms the current state of the art payment mechanism developed for this problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.