The classical multiwinner rules are designed for particular purposes. For example, variants of k-Borda are used to find k best competitors in judging contests while the Chamberlin-Courant rule is used to select a diverse set of k products. These rules represent two extremes of the multiwinner world. At times, however, one might need to find an appropriate trade-off between these two extremes. We explore continuous transitions from k-Borda to Chamberlin-Courant and study intermediate rules.
We consider the following problem: There is a set of items (e.g., movies) and a group of agents (e.g., passengers on a plane); each agent has some intrinsic utility for each of the items. Our goal is to pick a set of K items that maximize the total derived utility of all the agents (i.e., in our example we are to pick K movies that we put on the plane's entertainment system). However, the actual utility that an agent derives from a given item is only a fraction of its intrinsic one, and this fraction depends on how the agent ranks the item among the chosen, available, ones. We provide a formal specification of the model and provide concrete examples and settings where it is applicable. We show that the problem is hard in general, but we show a number of tractability results for its natural special cases.
We study the complexity of (approximate) winner determination under the Monroe and Chamberlin-Courant multiwinner voting rules, which determine the set of representatives by optimizing the total satisfaction or dissatisfaction of the voters with their representatives. The total (dis)satisfaction is calculated either as the sum of individual (dis)satisfactions in the utilitarian case or as the (dis)satisfaction of the worst off voter in the egalitarian case. We provide good approximation algorithms for the satisfaction-based utilitarian versions of the Monroe and Chamberlin-Courant rules, and inapproximability results for the dissatisfaction-based utilitarian versions of these rules and also for all egalitarian cases. Our algorithms are applicable and particularly appealing when voters submit truncated ballots. We provide experimental evaluation of the algorithms both on real-life preference-aggregation data and on synthetic preference data. These experiments show that our simple and fast algorithms can, in many cases, find near-perfect solutions.
We establish a link between multiwinner elections and apportionment problems by showing how approval-based multiwinner election rules can be interpreted as methods of apportionment. We consider several multiwinner rules and observe that they induce apportionment methods that are well-established in the literature on proportional representation. For instance, we show that Proportional Approval Voting induces the D'Hondt method and that Monroe's rule induces the largest remainder method. We also consider properties of apportionment methods and exhibit multiwinner rules that induce apportionment methods satisfying these properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.