By introducing artificial defects and/or light-emitters into photonic bandgap structures, it should be possible to manipulate photons. For example, it has been predicted that strong localization (or trapping) of photons should occur in structures with single defects, and that the propagation of photons should be controllable using arrays of defects. But there has been little experimental progress in this regard, with the exception of a laser based on a single-defect photonic crystal. Here we demonstrate photon trapping by a single defect that has been created artificially inside a two-dimensional photonic bandgap structure. Photons propagating through a linear waveguide are trapped by the defect, which then emits them to free space. We envisage that this phenomenon may be used in ultra-small optical devices whose function is to selectively drop (or add) photons with various energies from (or to) optical communication traffic. More generally, our work should facilitate the development of all-optical circuits incorporating photonic bandgap waveguides and resonators.
An artificial crystal structure has been fabricated exhibiting a full three-dimensional photonic bandgap effect at optical communication wavelengths. The photonic crystal was constructed by stacking 0.7-micrometer period semiconductor stripes with the accuracy of 30 nanometers by advanced wafer-fusion technique. A bandgap effect of more than 40 decibels (which corresponds to 99.99% reflection) was successfully achieved. The result encourages us to create an ultra-small optical integrated circuit including a three-dimensional photonic crystal waveguide with a sharp bend.
Lasing action of a surface-emitting laser with a two-dimensional photonic crystal structure is investigated. The photonic crystal has a triangular-lattice structure composed of InP and air holes, which is integrated with an InGaAsP/InP multiple-quantum-well active layer by a wafer fusion technique. Uniform two-dimensional lasing oscillation based on the coupling of light propagating in six equivalent Γ−X directions is successfully observed, where the wavelength of the active layer is designed to match the folded (second-order) Γ point of the Γ−X direction. The very narrow divergence angle of far field pattern and/or the lasing spectrum, which is considered to reflect the two-dimensional stop band, also indicate that the lasing oscillation occurs coherently.
We demonstrate polarization mode selection in a two-dimensional (2D) photonic crystal laser by controlling the geometry of the unit cell structure. As the band diagram of the square-lattice photonic crystal is influenced by the unit cell structure, calculations reveal that changing the structure from a circular to an elliptical geometry should result in a strong modification of the electromagnetic field distributions at the band edges. Such a structural modification is expected to provide a mechanism for controlling the polarization modes of the emitted light. A square-lattice photonic crystal with the elliptical unit cell structure has been fabricated and integrated with a gain media. The observed coherent 2D lasing action with a single wavelength and controlled polarization is in good agreement with the predicted behavior.
We demonstrate two orders of magnitude enhancement of light absorption in certain thin-film photonic crystal ͑PC͒ architectures due to strong resonances arising from parallel interface refraction ͑PIR͒. This anomalous type of refraction is acutely negative and usually out of the plane of incidence. Over a wide range of frequencies, light impinging on idealized two-dimensional ͑2D͒ thin-film photonic crystals, over a cone of at least 20°in off-normal directions, couples to Bloch modes propagating nearly parallel to the thin-film-to-air interface. For realistic three-dimensional PC films of cubic symmetry, synthesized by photoelectrochemical etching, the PIR effect persists over a spectral range of at least 15% relative to the center frequency and within a cone of 50°of incident angles, normal to the film. This leads to anomalously long optical path lengths and long dwell times before the light beam exits the thin film. This near continuum of high-quality-factor optical resonances, associated with "transverse optical slow modes" in a spectral range of high electromagnetic density of states, can be much more effective for trapping and absorbing light than that of the previously reported longitudinal slow-group-velocity effects. The parallel interface refraction effect is general and can be found in specific spectral ranges of both 2D and 3D photonic crystals with cubic or other appropriate symmetries. In the presence of weak optical absorption within the PC backbone, energy conversion enhancement is interpreted using a simple temporal mode-coupling model. It is shown that absorption is optimized when the structural quality factor ͑in the absence of absorption͒ of the transverse optical slow modes is comparable to abs , where is the optical frequency and abs is the absorption time scale of the film material. Quantitative numerical results for light harvesting efficiency are obtained by finite-difference time-domain simulations of the electromagnetic wave field. It is shown that small amounts of fabrication-related structural disorder can introduce additional resonances and broaden existing resonances, thereby improving the overall harvesting of broadband wide-acceptance-angle light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.