Throughout life, new neurons are continuously added to the dentate gyrus. As this continuous addition remodels hippocampal circuits, computational models predict that neurogenesis leads to degradation or forgetting of established memories. Consistent with this, increasing neurogenesis after the formation of a memory was sufficient to induce forgetting in adult mice. By contrast, during infancy, when hippocampal neurogenesis levels are high and freshly generated memories tend to be rapidly forgotten (infantile amnesia), decreasing neurogenesis after memory formation mitigated forgetting. In precocial species, including guinea pigs and degus, most granule cells are generated prenatally. Consistent with reduced levels of postnatal hippocampal neurogenesis, infant guinea pigs and degus did not exhibit forgetting. However, increasing neurogenesis after memory formation induced infantile amnesia in these species.
In the hippocampus, the production of dentate granule cells (DGCs) persists into adulthood. As adult-generated neurons are thought to contribute to hippocampal memory processing, promoting adult neurogenesis therefore offers the potential for restoring mnemonic function in the aged or diseased brain. Within this regenerative context, one key issue is whether developmentally generated and adult-generated DGCs represent functionally equivalent or distinct neuronal populations. To address this, we labeled separate cohorts of developmentally generated and adult-generated DGCs and used immunohistochemical approaches to compare their integration into circuits supporting hippocampus-dependent memory in intact mice. First, in the water maze task, rates of integration of adult-generated DGCs were regulated by maturation, with maximal integration not occurring until DGCs were five or more weeks in age. Second, these rates of integration were equivalent for embryonically, postnatally, and adult-generated DGCs. Third, these findings generalized to another hippocampus-dependent task, contextual fear conditioning. Together, these experiments indicate that developmentally generated and adult-generated DGCs are integrated into hippocampal memory networks at similar rates, and suggest a functional equivalence between DGCs generated at different developmental stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.