The conditions of increasing competition in today’s mining industry, deepening of mines and also decreasing ore reserve and quality parameters (grade, calorie, ppm, etc.) compels to reduce unit cost for maximum benefit. In this context, optimization of machinery and equipment in technical and economical sense is required in terms of economic mining. In underground mining, as ore transport operation significantly affects profitability, optimization of the system gains importance technically and economically. In this paper, the authors studied production capacities up to 1,000,000 ton/year and orebody depths up to 1,000 m according to different haulage systems; conventional shaft hoisting, declined mine truck haulage and flexowell vertical belt applications. In model study, unit transport costs of each alternative depending on the production capacity and mine depth have been calculated.
In the Bakibaba Copper Mine, the longhole stoping method is used in the production of copper ore. Stability problems have occurred at times on the footwall drift due to the interaction between the footwall drift and stope. In this study, we propose a method for estimating the minimum distance necessary to ensure a non-interaction zone between the footwall drift and stope. We used the finite element method and various distances between the footwall drift and stope and the displacements over drifts as parameters. We also performed analyses on various geological strength index values from low to high to determine the effect of the rock mass on the interaction between the footwall drift and stope
The propagation of blast-induced vibration velocity in the rock mass varies depending on many parameters. Due to a large number of effective parameters and the variability in the rock mass environment, it is not possible to create a vibration velocity propagation model using all of these parameters. On the other hand, it is important to determine the blast vibration velocity level in urban infrastructure works and mining operations near settlements. Recent studies on the subject have been interested in the determination of blast-induced vibration velocity by the back analysis estimations of advanced statistical approaches and artificial intelligence approaches. However, sudden changes in rock mass properties such as fault zones cause significant errors in the advanced statistical approaches functions used at the level of blast-induced vibration velocity. In this study, the variation of the blast-induced vibration velocities under the influence of the fault zone has been discussed. There is a fault zone along the northwest line of the Quarry boundary. The influence of the fault zone on the blast-induced vibration propagation was determined by comparing the vibration velocities behind the fault zone with the vibration velocities in the non-fault zone. Accordingly, it has been concluded that the fault zone has the potential to create significant differences due to the reflection/refraction of surface waves (Rayleigh and Love waves) in vibration velocity values in areas close to the fault zone have the potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.