According to classical electrolyte theories interactions in dilute (low ion density) electrolytes decay exponentially with distance, with the Debye screening length the characteristic length scale. This decay length decreases monotonically with increasing ion concentration due to effective screening of charges over short distances. Thus, within the Debye model no long-range forces are expected in concentrated electrolytes. Here we reveal, using experimental detection of the interaction between two planar charged surfaces across a wide range of electrolytes, that beyond the dilute (Debye-Hückel) regime the screening length increases with increasing concentration. The screening lengths for all electrolytes studied-including aqueous NaCl solutions, ionic liquids diluted with propylene carbonate, and pure ionic liquids-collapse onto a single curve when scaled by the dielectric constant. This nonmonotonic variation of the screening length with concentration, and its generality across ionic liquids and aqueous salt solutions, demonstrates an important characteristic of concentrated electrolytes of substantial relevance from biology to energy storage.
Organic synthesis is one of the key stumbling blocks in medicinal chemistry. A necessary yet unsolved step in planning synthesis is solving the forward problem: Given reactants and reagents, predict the products. Similar to other work, we treat reaction prediction as a machine translation problem between simplified molecular-input line-entry system (SMILES) strings (a text-based representation) of reactants, reagents, and the products. We show that a multihead attention Molecular Transformer model outperforms all algorithms in the literature, achieving a top-1 accuracy above 90% on a common benchmark data set. Molecular Transformer makes predictions by inferring the correlations between the presence and absence of chemical motifs in the reactant, reagent, and product present in the data set. Our model requires no handcrafted rules and accurately predicts subtle chemical transformations. Crucially, our model can accurately estimate its own uncertainty, with an uncertainty score that is 89% accurate in terms of classifying whether a prediction is correct. Furthermore, we show that the model is able to handle inputs without a reactant–reagent split and including stereochemistry, which makes our method universally applicable.
Ionic liquids are pure salts that are liquid under ambient conditions. As liquids composed solely of ions, the scientific consensus has been that ionic liquids have exceedingly high ionic strengths and thus very short Debye screening lengths. However, several recent experiments from laboratories around the world have reported data for the approach of two surfaces separated by ionic liquids which revealed remarkable long range forces that appear to be electrostatic in origin. Evidence has accumulated demonstrating long range surface forces for several different combinations of ionic liquids and electrically charged surfaces, as well as for concentrated mixtures of inorganic salts in solvent. The original interpretation of these forces, that ionic liquids could be envisioned as "dilute electrolytes," was controversial, and the origin of long range forces in ionic liquids remains the subject of discussion. Here we seek to collate and examine the evidence for long range surface forces in ionic liquids, identify key outstanding questions, and explore possible mechanisms underlying the origin of these long range forces. Long range surface forces in ionic liquids and other highly concentrated electrolytes hold diverse implications from designing ionic liquids for energy storage applications to rationalizing electrostatic correlations in biological self-assembly.
The interaction between charged objects in an electrolyte solution is a fundamental question in soft matter physics. It is well-known that the electrostatic contribution to the interaction energy decays exponentially with object separation. Recent measurements reveal that, contrary to the conventional wisdom given by classic Poisson-Boltzmann theory, the decay length increases with ion concentration for concentrated electrolytes and can be an order of magnitude larger than the ion diameter in ionic liquids. We derive a simple scaling theory that explains this anomalous dependence of the decay length on ion concentration. Our theory successfully collapses the decay lengths of a wide class of salts onto a single curve. A novel prediction of our theory is that the decay length increases linearly with the Bjerrum length, which we experimentally verify by surface force measurements. Moreover, we quantitatively relate the measured decay length to classic measurements of the activity coefficient in concentrated electrolytes, thus showing that the measured decay length is indeed a bulk property of the concentrated electrolyte as well as contributing a mechanistic insight into empirical activity coefficients.The structure of electrolytes near a charged surface and the resulting force between charged surfaces in an electrolyte solution is a fundamental question in soft matter physics. This question also underpins a plethora of applications, from supercapacitors [1] to colloidal selfassembly [2]. The classic Debye-Hückel theory [3], valid only for dilute electrolytes, predicts that the interaction between two charged surfaces in an electrolyte decays exponentially with the surface separation [4] with a decay length, called the Debye length, given bywhere is the dielectric constant of the medium (which is ion concentration-dependent), k B the Boltzmann constant, T the temperature, q the ion charge, c ion the ion concentration, andis the Bjerrum length. The Bjerrum length is the distance at which the interaction energy between two ions in a dielectric medium with dielectric constant equals the thermal energy unit k B T . The Debye-Hückel theory is a mean-field theory for asymptotically dilute electrolytes, i.e. where l 3 B c ion 1, so that the ion-ion separation is far greater than the Bjerrum length and thus the Coulomb interactions can be treated as a perturbation to ideal gas behaviour.The physical picture is less clear for concentrated electrolytes: Recent surface force balance (SFB) studies show that the interaction force between charged surfaces in an ionic liquid (molten salt at room temperature) decays exponentially, but with a decay length that is orders of magnitude longer than the Debye length or the ion diameter [5][6][7][8]. The screening lengths in concentrated inorganic salts are also long and increase with electrolyte concentration [8], in direct opposition to the prediction of the Debye-Hückel theory. Therefore, the anomalously long screening length is not a curiosity associated with ionic liquid chemistry, ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.