Bio metric technology is now used for employees time management attendance system because it has ability to recognize peoples unique physiological characteristics. Because of multiple benefits of Bio metric attendance system it has gained high popularity in the market. Bio metrics attendance system is extremely useful in helping business community feel secure by eliminating employees time theft, as it relies on ones personal characteristics that vary between individuals. Since bio metrics characteristics cannot be duplicate, it prevents punching on behalf of a co-worker working in the same company. The manual practice of attendance system is time consuming and needs full time personal monitoring whereas bio metric attendance saves employee time, decreases staffing overhead and provides accurate labor data to payroll system to effectively manage business operations and thereby increase productivity. Moreover the bio metric attendance system has brought transparency and enhanced the work culture in the system. We will explore various advantages and disadvantages of implementation of the bio metric attendance system to a big organization, or small entrepreneur or unit and the necessary measures for its efficient implementation.
Various channels have high traffic density during peak hours the problems are further exacerbated by the traffic overloading in downtown areas at peak hours. The reliable and efficient communication demands unnoticed handoff to the user without deteriorating the signal strength. Current cellular system exhibits a varying traffic conditions depending upon the corresponding variations in population which is low in rural areas and high in downtown areas. The traffic density becomes even higher at peak hours and low at night hours. The acceptable service quality demands optimum use of frequency spectrum for obtaining maximum traffic throughput. The efficient allocation of channels on need basis can be one of the solutions for efficient traffic management during peak hours. In Flexible Channel Allocation scheme (FlCA), the available channels are divided in fixed and flexible set channels. Fixed set channels are normally assigned to all the cells and the number of channels is decided by the approximate calculated load of particular cell that typically suffices the traffic load of cell. The flexible channels are assigned to those cells whose channels are inadequate under increased traffic load conditions. These channels are assigned in accordance with demand of increased traffic loads. Fuzzy logic approach being flexible is explored for assigning these flexible channels for enhanced QoS.
Cognitive radio (CR) is a promising solution to improve the spectrum utilization by enabling unlicensed users to exploit the spectrum in an opportunistic manner. Spectrum handoff is a different type of handoff in CR necessitated by the reappearance of primary user (PU) in the licensed band presently occupied by the secondary users (SUs). Spectrum handoff procedures aim to help the SUs to vacate the occupied licensed spectrum and find suitable target channel to resume the unfinished transmission. The purpose of spectrum mobility management in cognitive radio networks is to make sure that the transitions are made smoothly and rapidly such that the applications running on a cognitive user perceive minimum performance degradation during a spectrum handoff. In this paper, we will survey the literature on spectrum handoff in cognitive radio networks.
For last two decades, the demand for wireless spectrum has been increasing rapidly with tremendous developments in the telecom industry. There also has been huge growth in flow of multimedia traffic over the last decade. Thus, the demand for additional bandwidth is increasing exponentially despite the fact that the electromagnetic spectrum is a finite resource. On the other hand, spectrum occupancy is found to be quiet low in most of the allocated bands. Thus, the under-utilization of the precious spectrum is unaffordable if persistent growth of new and existing wireless services are to be sustained. Cognitive radio (CR) is a future technology initiated by many research organizations and academic institutions to increase the spectrum utilization of underutilized spectrum channels to ameliorate scarcity problem of valuable electromagnetic spectrum. There exists number of issues and challenges in designing and implementation of the cognitive radio. These issues need to be rigorously resolved before a cognitive radio is realised.
Cognitive radio (CR) is a novel technology to resolve the issue of under-utilization of wireless spectrum. There exists number of challenges and issues in designing and implementation of the cognitive radio. Extending quality-of-service (QoS) enabled applications to CR network is even more difficult task due to non-availability of the dedicated allocation of idle spectrum. CR imposes peculiar and unique challenges to guarantee quality of service of diverse flows in contrast to other wireless networks. This paper identifies the issues and challenges of QoS provisioning in cognitive radio networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.