Bio metric technology is now used for employees time management attendance system because it has ability to recognize peoples unique physiological characteristics. Because of multiple benefits of Bio metric attendance system it has gained high popularity in the market. Bio metrics attendance system is extremely useful in helping business community feel secure by eliminating employees time theft, as it relies on ones personal characteristics that vary between individuals. Since bio metrics characteristics cannot be duplicate, it prevents punching on behalf of a co-worker working in the same company. The manual practice of attendance system is time consuming and needs full time personal monitoring whereas bio metric attendance saves employee time, decreases staffing overhead and provides accurate labor data to payroll system to effectively manage business operations and thereby increase productivity. Moreover the bio metric attendance system has brought transparency and enhanced the work culture in the system. We will explore various advantages and disadvantages of implementation of the bio metric attendance system to a big organization, or small entrepreneur or unit and the necessary measures for its efficient implementation.
Various channels have high traffic density during peak hours the problems are further exacerbated by the traffic overloading in downtown areas at peak hours. The reliable and efficient communication demands unnoticed handoff to the user without deteriorating the signal strength. Current cellular system exhibits a varying traffic conditions depending upon the corresponding variations in population which is low in rural areas and high in downtown areas. The traffic density becomes even higher at peak hours and low at night hours. The acceptable service quality demands optimum use of frequency spectrum for obtaining maximum traffic throughput. The efficient allocation of channels on need basis can be one of the solutions for efficient traffic management during peak hours. In Flexible Channel Allocation scheme (FlCA), the available channels are divided in fixed and flexible set channels. Fixed set channels are normally assigned to all the cells and the number of channels is decided by the approximate calculated load of particular cell that typically suffices the traffic load of cell. The flexible channels are assigned to those cells whose channels are inadequate under increased traffic load conditions. These channels are assigned in accordance with demand of increased traffic loads. Fuzzy logic approach being flexible is explored for assigning these flexible channels for enhanced QoS.
Cognitive radio (CR) is a promising solution to improve the spectrum utilization by enabling unlicensed users to exploit the spectrum in an opportunistic manner. Spectrum handoff is a different type of handoff in CR necessitated by the reappearance of primary user (PU) in the licensed band presently occupied by the secondary users (SUs). Spectrum handoff procedures aim to help the SUs to vacate the occupied licensed spectrum and find suitable target channel to resume the unfinished transmission. The purpose of spectrum mobility management in cognitive radio networks is to make sure that the transitions are made smoothly and rapidly such that the applications running on a cognitive user perceive minimum performance degradation during a spectrum handoff. In this paper, we will survey the literature on spectrum handoff in cognitive radio networks.
Abstrac tCognitive radio (CR) is pro jected as a technology (or solution) that will raise the spectrum utilizat ion considerably by allowing low-priority or secondary user (SU) to utilize the spectrum of high-priority or primary user (PU) opportunistically. Spectru m handoff is a different type of handoff necessitated by the reappearance of the primary user on the frequency channels occupied by the secondary user at that time and location. In this paper, a hybrid type of spectrum handoff algorith m is proposed where proactive decision and reactive decision approaches are combined. Depending on the arrival rate o f primary user (i.e. PU activ ity), the algorith m switches fro m reactive decision mode to proactive decision mode and vice versa. The switching fro m one mode to another mode depends on threshold value of PU activity and we evaluated the threshold value through analysis for switching of the algorithm to be 0.37. Simu lated results show that the proposed hybrid spectrum handoff algorith m reduces the total service t ime of secondary user considerably compared to conventional proactive decision or reactive decision handoff approaches.
Cognitive radio is a technology initiated by many research organizations and academic institutions to raise the spectrum utilization of underutilized channels in order to alleviate spectrum scarcity problem to a larger extent. Spectrum handoff is initiated due to appearance of primary user (PU) on the channels occupied by the secondary user (SU) at that time and location or interference to the PU exceeds the certain threshold. In this paper, we propose a novel spectrum handoff algorithm using fuzzy logic based approach that does two important functions: 1) adjusts transmission power of SU intelligently in order to avoid handoff by reducing harmful interference to PUs and 2) takes handoff decisions intelligently in the light of new parameter such as expected holding time (HT) of the channel as one of its antecedent. Simulated results show impact analysis of selection of the channel in the light of HT information and the comparison with random selection algorithm demonstrates that there is considerable reduction in handoff rate of SU
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.