Training at the optimum power load (OPL) is an effective way to improve neuromuscular abilities of highly trained athletes. The purpose of this study was to test the effects of training using the jump squat (JS) or Olympic push-press (OPP) exercises at the OPL during a short-term preseason on speed-power related abilities in high-level under-20 soccer players. The players were divided into two training groups: JS group (JSG) and OPP group (OPPG). Both groups undertook 12 power-oriented sessions, using solely JS or OPP exercises. Pre- and post-6 weeks of training, athletes performed squat jump (SJ), countermovement jump (CMJ), sprinting speed (5, 10, 20 and 30 m), change of direction (COD) and speed tests. To calculate the transfer effect coefficient (TEC) between JS and MPP OPP and the speed in 5, 10, 20, and 30 m, the ratio between the result gain (effect size [ES]) in the untrained exercise and result gain in the trained exercise was calculated. Magnitude based inference and ES were used to test the meaningful effects. The TEC between JS and VEL 5, 10, 20, and 30 m ranged from 0.77 to 1.29, while the only TEC which could be calculated between OPP and VEL 5 was rather low (0.2). In addition, the training effects of JS on jumping and speed related abilities were superior (ES ranging from small to large) to those caused by OPP (trivial ES). To conclude, the JS exercise is superior to the OPP for improving speed-power abilities in elite young soccer players.
BackgroundSleep quality is an essential component of athlete’s recovery. However, a better understanding of the parameters to adequately quantify sleep quality in team sport athletes is clearly warranted.ObjectiveTo identify which parameters to use for sleep quality monitoring in team sport athletes.MethodsSystematic searches for articles reporting the qualitative markers related to sleep in team sport athletes were conducted in PubMed, Scopus, SPORTDiscus and Web of Science online databases. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. For the meta-analysis, effect sizes with 95% CI were calculated and heterogeneity was assessed using a random-effects model. The coefficient of variation (CV) with 95% CI was also calculated to assess the level of instability of each parameter.ResultsIn general, 30 measuring instruments were used for monitoring sleep quality. A meta-analysis was undertaken on 15 of these parameters. Four objective parameters inferred by actigraphy had significant results (sleep efficiency with small CV and sleep latency, wake episodes and total wake episode duration with large CV). Six subjective parameters obtained from questionnaires and scales also had meaningful results (Pittsburgh Sleep Quality Index (sleep efficiency), Likert scale (Hooper), Likert scale (no reference), Liverpool Jet-Lag Questionnaire, Liverpool Jet-Lag Questionnaire (sleep rating) and RESTQ (sleep quality)).ConclusionsThese data suggest that sleep efficiency using actigraphy, Pittsburgh Sleep Quality Index, Likert scale, Liverpool Jet-Lag Questionnaire and RESTQ are indicated to monitor sleep quality in team sport athletes.PROSPERO registration numberCRD42018083941.
Objective: To evaluate the effect of caffeine on white cell distribution and muscle injury markers in professional soccer players during exercise. Methods: 22 male athletes completed a placebo controlled double blind test protocol to simulate a soccer match, followed by a Yo-Yo intermittent recovery test. Results: Exercise caused an increase in packed cell volume that was enhanced by caffeine. Caffeine and exercise had a synergistic effect on the blood lymphocyte count, which increased by about 38% after exercise, and by an additional 35% when combined with caffeine. Caffeine promoted an exercise independent rise in circulating monocytes, and a synergistic action of exercise and caffeine was observed on segmented neutrophils. Caffeine promoted thrombocytosis. Plasma adenosine deaminase, aspartate aminotransferase, and lactate dehydrogenase concentrations were enhanced by exercise, and alanine transaminase concentration was enhanced in both groups, with a synergistic effect of caffeine. Conclusions: The pronounced increase in the white cell count in the group receiving caffeine appeared to be caused by greater muscle stress and consequently more intense endothelial and muscle cell injury. The use of caffeine may augment the risk of muscle damage in athletes.
The aim of this study was to test the relationships between jump squat (JS) and Olympic push press (OPP) power outputs and performance in sprint, squat jump (SJ), countermovement jump (CMJ) and change of direction (COD) speed tests in elite soccer players. 27 athletes performed a maximum power load test to determine their bar mean propulsive power (MPP) and bar mean propulsive velocity (MPV) in the JS and OPP exercises. Magnitude-based inference was used to compare the exercises. The MPV was higher in the OPP than in the JS. The MPP relative to body mass (MPP REL) was higher in the OPP. Only the JS MPP REL presented very large correlations with linear speed (0.7, for speed in 5, 10, 20 and 30 m) and vertical jumping abilities (0.8, for SJ and CMJ), and moderate correlation with COD speed (0.45). Although significant (except for COD), the associations between OPP outcomes and field-based measurements (speed, SJ and CMJ) were all moderate, ranging from 0.40 to 0.48. In a group composed of elite soccer players, the JS exercise is more associated with jumping and sprinting abilities than the OPP. Longitudinal studies are needed to confirm if these strong relationships imply superior training effects in favor of the JS exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.