Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties.
Steatotic livers are more sensitive to ischemia/reperfusion (I/R) and are thus routinely rejected for transplantation because of their increased rate of primary nonfunction (PNF). Lean livers have less I/R-induced damage and inflammation due to Kupffer cells (KC), which are protective after total, warm, hepatic I/R with associated bowel congestion. This protection has been linked to KC-dependent expression of the potent anti-inflammatory cytokine interleukin-10 (IL-10). We hypothesized that pretreatment with exogenous IL-10 would protect the steatotic livers of genetically obese (ob/ob) mice from inflammation and injury induced by I/R. Lean and ob/ob mice were pretreated with either IL-10 or liposomally-encapsulated bisphosphonate clodronate (shown to deplete KC) prior to total, warm, hepatic I/R. IL-10 pretreatment increased survival of ob/ob animals at 24 hrs post-I/R from 30% to 100%, and significantly decreased serum ALT levels. At six hrs post-I/R, IL-10 pretreatment increased IL-10 mRNA expression, but suppressed up-regulation of the pro-inflammatory cytokine IL-1β mRNA. However, ALT levels were elevated at six hrs post-I/R in KC-depleted animals. These data reveal that pretreatment with IL-10 protects steatotic livers undergoing I/R, and that phagocytically active KC retain a hepatoprotective role in the steatotic environment.
Nonalcoholic steatohepatitis (NASH) is currently the third most common cause of end stage liver disease necessitating transplantation. The question remains how inflammation and NASH develop in the setting of nonalcoholic fatty liver disease (NAFLD) and steatosis. Understand the roles of toll-like receptor 4 (TLR4) and dietary fats in the development of hepatic inflammation. Wild-type and TLR4 KO mice were fed a standard high fat diet (LD), a high saturated fat diet (MD), or an isocaloric control diet (CD). Sera and tissue were analyzed for development of hepatic steatosis, inflammation, and injury. MD induced features of hepatic steatosis and inflammation in wild-type, but not in TLR4 KO, mice. TLR4 KO prevented MD induced increases in NAFLD activity scores, serum alanine aminotransferase levels, and inflammatory cytokine expression. Inflammatory cell infiltration and cytokine expression were also lower in the TLR4 KO mice livers than wild-type mice fed MD. Hepatic expression of Collagen I transcripts and collagen deposition were also decreased in the TLR4 KO MD animals. Results show that TLR4 plays a critical role in the effects of dietary fat composition on the development of hepatic steatosis, inflammation, and injury consistent with nonalcoholic steatohepatitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.