BackgroundTinnitus is a result of hyper-activity/hyper-synchrony of auditory neurons coding the tinnitus frequency, which has developed due to synchronous mass activity owing to the lack of inhibition. We assume that removal of exactly these frequencies from a complex auditory stimulus will cause the brain to reorganize around tonotopic regions coding the tinnitus frequency through inhibition-induced plasticity. Based on this assumption, a novel treatment for tonal tinnitus - tailor-made notched music training (TMNMT) - has been introduced and was tested in this clinical trial.MethodsA randomized controlled trial in parallel group design was performed in a double-blinded manner. We included 100 participants with chronic, tonal tinnitus who listened to tailor-made notched music for two hours a day for three consecutive months. Our primary outcome measures were the Tinnitus Handicap Questionnaire and Visual Analog Scales measuring perceived tinnitus loudness, awareness, distress and handicap. Participants rated their tinnitus before and after the training as well as one month after cessation of the training.ResultsWhile no effect was found for the primary outcome measures, tinnitus distress, as measured by the Tinnitus Questionnaire, a secondary outcome measure, developed differently in the two groups. The treatment group showed higher distress scores while the placebo group revealed lower distress scores after the training. However, this effect did not reach significance in post-hoc analysis and disappeared at follow-up measurements. At follow-up, tinnitus loudness in the treatment group was significantly reduced as compared to the control group. Post hoc analysis, accounting for low reliability scores in the Visual Analog Scales, showed a significant reduction of the overall Visual Analog Scale mean score in the treatment group even at the post measurement.ConclusionThis is the first study on TMNMT that was planned and conducted following the CONSORT statement standards for clinical trials. The current work is one more step towards a final evaluation of TMNMT. Already after three months the effect of training with tailor-made notched music is observable in the most direct rating of tinnitus perception – the tinnitus loudness, while more global measures of tinnitus distress do not show relevant changes.Trial registrationCurrent Controlled Trials ISRCTN04840953; Trial registration date: 17.07.2013
We investigated the modulation of lateral inhibition in the human auditory cortex by means of magnetoencephalography (MEG). In the first experiment, five acoustic masking stimuli (MS), consisting of noise passing through a digital notch filter which was centered at 1 kHz, were presented. The spectral energy contrasts of four MS were modified systematically by either amplifying or attenuating the edge-frequency bands around the notch (EFB) by 30 dB. Additionally, the width of EFB amplification/attenuation was varied (3/8 or 7/8 octave on each side of the notch). N1m and auditory steady state responses (ASSR), evoked by a test stimulus with a carrier frequency of 1 kHz, were evaluated. A consistent dependence of N1m responses upon the preceding MS was observed. The minimal N1m source strength was found in the narrowest amplified EFB condition, representing pronounced lateral inhibition of neurons with characteristic frequencies corresponding to the center frequency of the notch (NOTCH CF) in secondary auditory cortical areas. We tested in a second experiment whether an even narrower bandwidth of EFB amplification would result in further enhanced lateral inhibition of the NOTCH CF. Here three MS were presented, two of which were modified by amplifying 1/8 or 1/24 octave EFB width around the notch. We found that N1m responses were again significantly smaller in both amplified EFB conditions as compared to the NFN condition. To our knowledge, this is the first study demonstrating that the energy and width of the EFB around the notch modulate lateral inhibition in human secondary auditory cortical areas. Because it is assumed that chronic tinnitus is caused by a lack of lateral inhibition, these new insights could be used as a tool for further improvement of tinnitus treatments focusing on the lateral inhibition of neurons corresponding to the tinnitus frequency, such as the tailor-made notched music training.
Background: There is increasing evidence that people with attention-deficit/hyperactivity disorder (ADHD) are impaired in emotion regu lation, but psychophysiological and functional MRI data on emotion processing in adult patients with ADHD are scarce. We investigated the neural correlates of reappraisal as one of the most efficient emotion-regulation strategies. Methods: We included 30 adult patients with ADHD and 35 healthy controls in our study. We applied a well-established reappraisal paradigm in functional MRI and assessed behavioural emotion-regulation strategies with standardized questionnaires. We hypothesized that patients with ADHD would demonstrate impaired reappraisal related to reduced activations in the frontoparietal cognitive control network. Results: Despite our hypothesis, we found no significant activation differences in the neural reappraisal network between patients with ADHD and controls. As well, both groups revealed similar reappraisal success on the immediate behavioural ratings in the scanner. Interestingly, patients with ADHD revealed significantly increased activations in the dorsal and ventral anterior cingulate cortex (ACC) compared with controls when viewing negative > neutral pictures. These ACC activations were significantly correlated with the prevalence of habitual use of reappraisal in patients with ADHD only. Limitations: Patients withdrew medication only 24 hours before the experiment; we investigated negative, but not positive, emotion processing and regulation. Conclusion: Although emotion dysregulation is regarded as a core symptom of ADHD, explicit reappraisal does not seem to be impaired in adult patients. However, increased activation of the ACC implies stronger implicit emotion regulation induced by negative stimuli. This might be explained by emotional hyperresponsivity in patients with ADHD compared with controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.