BackgroundTinnitus is a result of hyper-activity/hyper-synchrony of auditory neurons coding the tinnitus frequency, which has developed due to synchronous mass activity owing to the lack of inhibition. We assume that removal of exactly these frequencies from a complex auditory stimulus will cause the brain to reorganize around tonotopic regions coding the tinnitus frequency through inhibition-induced plasticity. Based on this assumption, a novel treatment for tonal tinnitus - tailor-made notched music training (TMNMT) - has been introduced and was tested in this clinical trial.MethodsA randomized controlled trial in parallel group design was performed in a double-blinded manner. We included 100 participants with chronic, tonal tinnitus who listened to tailor-made notched music for two hours a day for three consecutive months. Our primary outcome measures were the Tinnitus Handicap Questionnaire and Visual Analog Scales measuring perceived tinnitus loudness, awareness, distress and handicap. Participants rated their tinnitus before and after the training as well as one month after cessation of the training.ResultsWhile no effect was found for the primary outcome measures, tinnitus distress, as measured by the Tinnitus Questionnaire, a secondary outcome measure, developed differently in the two groups. The treatment group showed higher distress scores while the placebo group revealed lower distress scores after the training. However, this effect did not reach significance in post-hoc analysis and disappeared at follow-up measurements. At follow-up, tinnitus loudness in the treatment group was significantly reduced as compared to the control group. Post hoc analysis, accounting for low reliability scores in the Visual Analog Scales, showed a significant reduction of the overall Visual Analog Scale mean score in the treatment group even at the post measurement.ConclusionThis is the first study on TMNMT that was planned and conducted following the CONSORT statement standards for clinical trials. The current work is one more step towards a final evaluation of TMNMT. Already after three months the effect of training with tailor-made notched music is observable in the most direct rating of tinnitus perception – the tinnitus loudness, while more global measures of tinnitus distress do not show relevant changes.Trial registrationCurrent Controlled Trials ISRCTN04840953; Trial registration date: 17.07.2013
We investigated the modulation of lateral inhibition in the human auditory cortex by means of magnetoencephalography (MEG). In the first experiment, five acoustic masking stimuli (MS), consisting of noise passing through a digital notch filter which was centered at 1 kHz, were presented. The spectral energy contrasts of four MS were modified systematically by either amplifying or attenuating the edge-frequency bands around the notch (EFB) by 30 dB. Additionally, the width of EFB amplification/attenuation was varied (3/8 or 7/8 octave on each side of the notch). N1m and auditory steady state responses (ASSR), evoked by a test stimulus with a carrier frequency of 1 kHz, were evaluated. A consistent dependence of N1m responses upon the preceding MS was observed. The minimal N1m source strength was found in the narrowest amplified EFB condition, representing pronounced lateral inhibition of neurons with characteristic frequencies corresponding to the center frequency of the notch (NOTCH CF) in secondary auditory cortical areas. We tested in a second experiment whether an even narrower bandwidth of EFB amplification would result in further enhanced lateral inhibition of the NOTCH CF. Here three MS were presented, two of which were modified by amplifying 1/8 or 1/24 octave EFB width around the notch. We found that N1m responses were again significantly smaller in both amplified EFB conditions as compared to the NFN condition. To our knowledge, this is the first study demonstrating that the energy and width of the EFB around the notch modulate lateral inhibition in human secondary auditory cortical areas. Because it is assumed that chronic tinnitus is caused by a lack of lateral inhibition, these new insights could be used as a tool for further improvement of tinnitus treatments focusing on the lateral inhibition of neurons corresponding to the tinnitus frequency, such as the tailor-made notched music training.
In conclusion, we find that the use of self-administered tinnitus pitch-matching procedures on a mobile device is feasible and easier in practice without any loss of reliability and validity. A major advantage is the possibility of repeated measurements without expensive equipment and experienced staff. Repeated measurements of tinnitus pitch can provide more information about the stability of the tinnitus perception and may improve the ability of participants to match their tinnitus.
Chronic tinnitus seems to be caused by reduced inhibition among frequency selective neurons in the auditory cortex. One possibility to reduce tinnitus perception is to induce inhibition onto over-activated neurons representing the tinnitus frequency via tailor-made notched music (TMNM). Since lateral inhibition is modifiable by spectral energy contrasts, the question arises if the effects of inhibition-induced plasticity can be enhanced by introducing increased spectral energy contrasts (ISEC) in TMNM. Eighteen participants suffering from chronic tonal tinnitus, pseudo randomly assigned to either a classical TMNM or an ISEC-TMNM group, listened to notched music for three hours on three consecutive days. The music was filtered for both groups by introducing a notch filter centered at the individual tinnitus frequency. For the ISEC-TMNM group a frequency bandwidth of 3/8 octaves on each side of the notch was amplified, additionally, by about 20 dB. Before and after each music exposure, participants rated their subjectively perceived tinnitus loudness on a visual analog scale. During the magnetoencephalographic recordings, participants were stimulated with either a reference tone of 500 Hz or a test tone with a carrier frequency representing the individual tinnitus pitch. Perceived tinnitus loudness was significantly reduced after TMNM exposure, though TMNM type did not influence the loudness ratings. Tinnitus related neural activity in the N1m time window and in the so called tinnitus network comprising temporal, parietal and frontal regions was reduced after TMNM exposure. The ISEC-TMNM group revealed even enhanced inhibition-induced plasticity in a temporal and a frontal cortical area. Overall, inhibition of tinnitus related neural activity could be strengthened in people affected with tinnitus by increasing spectral energy contrast in TMNM, confirming the concepts of inhibition-induced plasticity via TMNM and spectral energy contrasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.