(1) Background: Despite the complementarity between radiology and histopathology, both from a diagnostic and a prognostic perspective, quantitative analyses of these modalities are usually performed in disconnected silos. This work presents initial results for differentiating two major non-small cell lung cancer (NSCLC) subtypes by exploring cross-scale associations between Computed Tomography (CT) images and corresponding digitized pathology images. (2) Methods: The analysis comprised three phases, (i) a multi-resolution cell density quantification to identify discriminant pathomic patterns for differentiating adenocarcinoma (ADC) and squamous cell carcinoma (SCC), (ii) radiomic characterization of CT images by using Haralick descriptors to quantify tumor textural heterogeneity as represented by gray-level co-occurrences to discriminate the two pathological subtypes, and (iii) quantitative correlation analysis between the multi-modal features to identify potential associations between them. This analysis was carried out using two publicly available digitized pathology databases (117 cases from TCGA and 54 cases from CPTAC) and a public radiological collection of CT images (101 cases from NSCLC-R). (3) Results: The top-ranked cell density pathomic features from the histopathology analysis were correlation, contrast, homogeneity, sum of entropy and difference of variance; which yielded a cross-validated AUC of 0.72 ± 0.02 on the training set (CPTAC) and hold-out validation AUC of 0.77 on the testing set (TCGA). Top-ranked co-occurrence radiomic features within NSCLC-R were contrast, correlation and sum of entropy which yielded a cross-validated AUC of 0.72 ± 0.01. Preliminary but significant cross-scale associations were identified between cell density statistics and CT intensity values using matched specimens available in the TCGA cohort, which were used to significantly improve the overall discriminatory performance of radiomic features in differentiating NSCLC subtypes (AUC = 0.78 ± 0.01). (4) Conclusions: Initial results suggest that cross-scale associations may exist between digital pathology and CT imaging which can be used to identify relevant radiomic and histopathology features to accurately distinguish lung adenocarcinomas from squamous cell carcinomas.
PURPOSE Glioblastoma is a highly heterogeneous brain tumor. Primary treatment for glioblastoma involves maximally-safe surgical resection. After surgery, resected tissue slides are visually analyzed by neuro-pathologists to identify distinct histological hallmarks characterizing glioblastoma including high cellularity, necrosis, and vascular proliferation. In this work, we present a hierarchical deep learning-based strategy to automatically segment distinct Glioblastoma niches including necrosis, cellular tumor, and hyperplastic blood vessels, on digitized histopathology slides. METHODS We employed the IvyGap cohort for which Hematoxylin and eosin (H&E) slides (digitized at 20X magnification) from n=41 glioblastoma patients were available. Additionally, expert-driven segmentations of cellular tumor, necrosis, and hyperplastic blood vessels (along with other histological attributes) were made available. We randomly employed n=120 slides from 29 patients for training, n=38 slides from 6 cases for validation, and n=30 slides from 6 patients to feed our deep learning model based on Residual Network architecture (ResNet-50). ~2,000 patches of 224x224 pixels were sampled for every slide. Our hierarchical model included first segmenting necrosis from non-necrotic (i.e. cellular tumor) regions, and then from the regions segmented as non-necrotic, identifying hyperplastic blood-vessels from the rest of the cellular tumor. RESULTS Our model achieved a training accuracy of 94%, and a testing accuracy of 88% with an area under the curve (AUC) of 92% in distinguishing necrosis from non-necrotic (i.e. cellular tumor) regions. Similarly, we obtained a training accuracy of 78%, and a testing accuracy of 87% (with an AUC of 94%) in identifying hyperplastic blood vessels from the rest of the cellular tumor. CONCLUSION We developed a reliable hierarchical segmentation model for automatic segmentation of necrotic, cellular tumor, and hyperplastic blood vessels on digitized H&E-stained Glioblastoma tissue images. Future work will involve extension of our model for segmentation of pseudopalisading patterns and microvascular proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.