We developed a novel interpretable biological heart age estimation model using cardiovascular magnetic resonance radiomics measures of ventricular shape and myocardial character. We included 29,996 UK Biobank participants without cardiovascular disease. Images were segmented using an automated analysis pipeline. We extracted 254 radiomics features from the left ventricle, right ventricle, and myocardium of each study. We then used Bayesian ridge regression with tenfold cross-validation to develop a heart age estimation model using the radiomics features as the model input and chronological age as the model output. We examined associations of radiomics features with heart age in men and women, observing sex-differential patterns. We subtracted actual age from model estimated heart age to calculate a “heart age delta”, which we considered as a measure of heart aging. We performed a phenome-wide association study of 701 exposures with heart age delta. The strongest correlates of heart aging were measures of obesity, adverse serum lipid markers, hypertension, diabetes, heart rate, income, multimorbidity, musculoskeletal health, and respiratory health. This technique provides a new method for phenotypic assessment relating to cardiovascular aging; further studies are required to assess whether it provides incremental risk information over current approaches.
The proposed method provides an useful delineation of the RV shape using only the spatial and temporal information of the cine MR images. This methodology may be used by the expert to achieve cardiac indicators of the right ventricle function.
Objectives Evaluation of the feasibility of using cardiovascular magnetic resonance (CMR) radiomics in the prediction of incident atrial fibrillation (AF), heart failure (HF), myocardial infarction (MI), and stroke using machine learning techniques. Methods We identified participants from the UK Biobank who experienced incident AF, HF, MI, or stroke during the continuous longitudinal follow-up. The CMR indices and the vascular risk factors (VRFs) as well as the CMR images were obtained for each participant. Three-segmented regions of interest (ROIs) were computed: right ventricle cavity, left ventricle (LV) cavity, and LV myocardium in end-systole and end-diastole phases. Radiomics features were extracted from the 3D volumes of the ROIs. Seven integrative models were built for each incident cardiovascular disease (CVD) as an outcome. Each model was built with VRF, CMR indices, and radiomics features and a combination of them. Support vector machine was used for classification. To assess the model performance, the accuracy, sensitivity, specificity, and AUC were reported. Results AF prediction model using the VRF+CMR+Rad model (accuracy: 0.71, AUC 0.76) obtained the best result. However, the AUC was similar to the VRF+Rad model. HF showed the most significant improvement with the inclusion of CMR metrics (VRF+CMR+Rad: 0.79, AUC 0.84). Moreover, adding only the radiomics features to the VRF reached an almost similarly good performance (VRF+Rad: accuracy 0.77, AUC 0.83). Prediction models looking into incident MI and stroke reached slightly smaller improvement. Conclusions Radiomics features may provide incremental predictive value over VRF and CMR indices in the prediction of incident CVDs. Key Points • Prediction of incident atrial fibrillation, heart failure, stroke, and myocardial infarction using machine learning techniques. • CMR radiomics, vascular risk factors, and standard CMR indices will be considered in the machine learning models. • The experiments show that radiomics features can provide incremental predictive value over VRF and CMR indices in the prediction of incident cardiovascular diseases.
Automatic quantification of the left ventricle (LV) from cardiac magnetic resonance (CMR) images plays an important role in making the diagnosis procedure efficient, reliable, and alleviating the laborious reading work for physicians. Considerable efforts have been devoted to LV quantification using different strategies that include segmentation-based (SG) methods and the recent direct regression (DR) methods. Although both SG and DR methods have obtained great success for the task, a systematic platform to benchmark them remains absent because of differences in label information during model learning.In this paper, we conducted an unbiased evaluation and comparison of cardiac LV quantification methods that were submitted to the Left Ventricle Quantification (LVQuan) challenge, which was held in conjunction with the Statistical Atlases and Computational Modeling of the Heart (STACOM) workshop at the MICCAI 2018. The challenge was targeted at the quantification
The proposed methodology and model have the potential to become an instrument to guide health spending priorities using some kind of evidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.