Vector incrimination studies were conducted from April 2003 to February 2005 at three riverine villages 1.5 km to 7.0 km apart, along the Matapi River, Amapa State, Brazil. A total of 113,117 mosquitoes were collected and placed in pools of
Background: Duffy blood group polymorphisms are important in areas where Plasmodium vivax predominates, because this molecule acts as a receptor for this protozoan. In the present study, Duffy blood group genotyping in P. vivax malaria patients from four different Brazilian endemic areas is reported, exploring significant associations between blood group variants and susceptibility or resistance to malaria.
Three communities separated by 1.5-7.0 km, along the Matapí River, Amapá State, Brazil, were sampled monthly from April 2003 to November 2005 to determine relationships between seasonal abundance of host-seeking anophelines, rainfall and malaria cases. Out of the 759 821 adult female anophelines collected, Anopheles darlingi Root (Diptera: Culicidae) was the most abundant (56.2%) followed by An. marajoara Galvão & Damasceno (24.6%), An. nuneztovari Gabaldón (12.4%), An. intermedius (Chagas) (4.4%) and An. triannulatus (Neiva and Pinto) (2.3%). Vector abundance, as measured by human landing catches, fluctuated during the course of the study and varied in species-specific ways with seasonal patterns of rainfall. Anopheles darlingi and An. triannulatus were more abundant during the wet-dry transition period in June to August, whereas An. marajoara began to increase in abundance in February in two villages, and during the wet-dry transition in the other village. Anopheles nuneztovari and An. intermedius increased in abundance shortly after the rains began in January to February. A generalized linear mixed model (GLMM) analysis of 32 consecutive months of collections showed significant differences in abundance for each species by village and date (P < 0.0001). Correlations between lagged rainfall and abundances also differed among species. A strong positive correlation of An. darlingi abundance with rainfall lagged by 4 and 5 months (Pearson's r = 0.472-0.676) was consistent among villages and suggests that rainfall may predict vector abundance. Significant correlations were detected between numbers of malaria cases and abundances of suspected vector species. The present study shows how long-term field research may connect entomological and climatological correlates with malaria incidence.
The circumsporozoite protein (CSP) of the Plasmodium vivax infective sporozoite is considered to be a major target for the development of recombinant malaria vaccines. The Duffy blood group molecule acts as the red blood cell receptor for P. vivax. We review the frequency of P. vivax CSP variants and report their association with the Duffy blood group genotypes from Brazilian Amazon patients carrying P. vivax malaria. Peripheral blood samples were collected from 155 P. vivax-infected individuals from five Brazilian malaria-endemic areas. The P. vivax CSP variants and the Duffy blood group genotypes were assessed using PCR/RFLP. In single infections, the VK210 variant was the commonest followed by the P. vivax-like variant. The typing of P. vivax indicated that the frequency of variants among the study areas was significantly different from one to another. This is the first detection of the VK247 and P. vivax-like variant in single infections in endemic areas of Brazil. Association of the CSP P. vivax variants with the heterozygous Duffy blood group system genotype was significant for VK210 single infection. These observations provide additional data on the Plasmodium-host interactions concerning the Duffy blood group and P. vivax capability of causing human malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.