The aim of the study was to evaluate the chemical composition of crushed, extracted human teeth and the quantity of biomaterial that can be obtained from this process. A total of 100 human teeth, extracted due to trauma, decay, or periodontal disease, were analyzed. After extraction, all the teeth were classified, measured, and weighed on a microscale. The human teeth were crushed immediately using the Smart Dentin Grinder machine (KometaBio Inc., Cresskill, NJ, USA), a device specially designed for this procedure. The human tooth particles obtained were of 300–1200 microns, obtained by sieving through a special sorting filter, which divided the material into two compartments. The crushed teeth were weighed on a microscale, and scanning electron microscopy (SEM) evaluation was performed. After processing, 0.25 gr of human teeth produced 1.0 cc of biomaterial. Significant differences in tooth weight were found between the first and second upper molars compared with the lower molars. The chemical composition of the particulate was clearly similar to natural bone. Scanning electron microscopy–energy dispersive X-ray (SEM–EDX) analysis of the tooth particles obtained mean results of Ca% 23.42 ± 0.34 and P% 9.51 ± 0.11. Pore size distribution curves expressed the interparticle pore range as one small peak at 0.0053 µm. This result is in accordance with helium gas pycnometer findings; the augmented porosity corresponded to interparticle spaces and only 2.533% corresponded to intraparticle porosity. Autogenous tooth particulate biomaterial made from human extracted teeth may be considered a potential material for bone regeneration due to its chemical composition and the quantity obtained. After grinding the teeth, the resulting material increases in quantity by up to three times its original volume, such that two extracted mandibular lateral incisors teeth will provide a sufficient amount of material to fill four empty mandibular alveoli. The tooth particles present intra and extra pores up to 44.48% after pycnometer evaluation in order to increase the blood supply and support slow resorption of the grafted material, which supports healing and replacement resorption to achieve lamellar bone. After SEM–EDX evaluation, it appears that calcium and phosphates are still present within the collagen components even after the particle cleaning procedures that are conducted before use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.